Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 30(43): 14560-72, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980614

RESUMO

Cobblestone (type II) lissencephaly and mental retardation are characteristic features of a subset of congenital muscular dystrophies that include Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type congenital muscular dystrophy. Although the majority of clinical cases are genetically undefined, several causative genes have been identified that encode known or putative glycosyltransferases in the biosynthetic pathway of dystroglycan. Here we test the effects of brain-specific deletion of dystroglycan, and show distinct functions for neuronal and glial dystroglycan. Deletion of dystroglycan in the whole brain produced glial/neuronal heterotopia resembling the cerebral cortex malformation in cobblestone lissencephaly. In wild-type mice, dystroglycan stabilizes the basement membrane of the glia limitans, thereby supporting the cortical infrastructure necessary for neuronal migration. This function depends on extracellular dystroglycan interactions, since the cerebral cortex developed normally in transgenic mice that lack the dystroglycan intracellular domain. Also, forebrain histogenesis was preserved in mice with neuron-specific deletion of dystroglycan, but hippocampal long-term potentiation was blunted, as is also the case in the Largemyd mouse, in which dystroglycan glycosylation is disrupted. Our findings provide genetic evidence that neuronal dystroglycan plays a role in synaptic plasticity and that glial dystroglycan is involved in forebrain development. Differences in dystroglycan glycosylation in distinct cell types of the CNS may contribute to the diversity of dystroglycan function in the CNS, as well as to the broad clinical spectrum of type II lissencephalies.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Distroglicanas/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/anormalidades , Química Encefálica/genética , Química Encefálica/fisiologia , Distroglicanas/genética , Distroglicanas/metabolismo , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imunofluorescência , Genes myc/genética , Proteína Glial Fibrilar Ácida/genética , Hipocampo/fisiologia , Hidrocefalia/genética , Hidrocefalia/patologia , Proteínas de Filamentos Intermediários/genética , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nestina , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Neuron ; 38(5): 747-58, 2003 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12797959

RESUMO

Dystroglycan is a central component of the dystrophin-glycoprotein complex implicated in the pathogenesis of several neuromuscular diseases. Although dystroglycan is expressed by Schwann cells, its normal peripheral nerve functions are unknown. Here we show that selective deletion of Schwann cell dystroglycan results in slowed nerve conduction and nodal changes including reduced sodium channel density and disorganized microvilli. Additional features of mutant mice include deficits in rotorod performance, aberrant pain responses, and abnormal myelin sheath folding. These data indicate that dystroglycan is crucial for both myelination and nodal architecture. Dystroglycan may be required for the normal maintenance of voltage-gated sodium channels at nodes of Ranvier, possibly by mediating trans interactions between Schwann cell microvilli and the nodal axolemma.


Assuntos
Proteínas do Citoesqueleto/deficiência , Glicoproteínas de Membrana/deficiência , Bainha de Mielina/metabolismo , Nervos Periféricos/crescimento & desenvolvimento , Nós Neurofibrosos/metabolismo , Células de Schwann/metabolismo , Canais de Sódio/metabolismo , Animais , Animais Recém-Nascidos , Membrana Celular/metabolismo , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Células Cultivadas , Proteínas do Citoesqueleto/genética , Distroglicanas , Laminina/genética , Laminina/metabolismo , Substâncias Macromoleculares , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Mutação/genética , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Condução Nervosa/genética , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Ligação Proteica/genética , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Células de Schwann/ultraestrutura , Degeneração Walleriana/genética , Degeneração Walleriana/metabolismo , Degeneração Walleriana/fisiopatologia
3.
Acta Neuropathol Commun ; 1: 58, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24252195

RESUMO

BACKGROUND: Cobblestone lissencephaly is a severe neuronal migration disorder associated with congenital muscular dystrophies (CMD) such as Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type CMD. In these severe forms of dystroglycanopathy, the muscular dystrophy and other tissue pathology is caused by mutations in genes involved in O-linked glycosylation of alpha-dystroglycan. While cerebellar dysplasia is a common feature of dystroglycanopathy, its pathogenesis has not been thoroughly investigated. RESULTS: Here we evaluate the role of dystroglycan during cerebellar development. Brain-selective deletion of dystroglycan does not affect overall cerebellar growth, yet causes malformations associated with glia limitans disruptions and granule cell heterotopia that recapitulate phenotypes found in dystroglycanopathy patients. Cerebellar pathology in these mice is not evident until birth even though dystroglycan is lost during the second week of embryogenesis. The severity and spatial distribution of glia limitans disruption, Bergmann glia disorganization, and heterotopia exacerbate during postnatal development. Astrogliosis becomes prominent at these same sites by the time cerebellar development is complete. Interestingly, there is spatial heterogeneity in the glia limitans and granule neuron migration defects that spares the tips of lobules IV-V and VI. CONCLUSIONS: The full spectrum of developmental pathology is caused by loss of dystroglycan from Bergmann glia, as neither granule cell- nor Purkinje cell-specific deletion of dystroglycan results in similar pathology. These data illustrate the importance of dystroglycan function in radial/Bergmann glia, not neurons, for normal cerebellar histogenesis. The spatial heterogeneity of pathology suggests that the dependence on dystroglycan is not uniform.


Assuntos
Movimento Celular/fisiologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Membrana Basal/metabolismo , Bromodesoxiuridina , Cerebelo/ultraestrutura , Distroglicanas/genética , Distroglicanas/metabolismo , Imunofluorescência , Gliose/fisiopatologia , Camundongos Knockout , Microscopia Eletrônica , Neuroglia/ultraestrutura
4.
Nature ; 418(6896): 422-5, 2002 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12140559

RESUMO

Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), and Walker-Warburg syndrome are congenital muscular dystrophies (CMDs) with associated developmental brain defects. Mutations reported in genes of FCMD and MEB patients suggest that the genes may be involved in protein glycosylation. Dystroglycan is a highly glycosylated component of the muscle dystrophin-glycoprotein complex that is also expressed in brain, where its function is unknown. Here we show that brain-selective deletion of dystroglycan in mice is sufficient to cause CMD-like brain malformations, including disarray of cerebral cortical layering, fusion of cerebral hemispheres and cerebellar folia, and aberrant migration of granule cells. Dystroglycan-null brain loses its high-affinity binding to the extracellular matrix protein laminin, and shows discontinuities in the pial surface basal lamina (glia limitans) that probably underlie the neuronal migration errors. Furthermore, mutant mice have severely blunted hippocampal long-term potentiation with electrophysiologic characterization indicating that dystroglycan might have a postsynaptic role in learning and memory. Our data strongly support the hypothesis that defects in dystroglycan are central to the pathogenesis of structural and functional brain abnormalities seen in CMD.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Citoesqueleto/metabolismo , Deleção de Genes , Glicoproteínas de Membrana/metabolismo , Distrofias Musculares/congênito , Distrofias Musculares/genética , Animais , Encéfalo/anormalidades , Encéfalo/fisiopatologia , Movimento Celular , Proteínas do Citoesqueleto/genética , Distroglicanas , Eletrofisiologia , Glicosilação , Hipocampo/anormalidades , Hipocampo/fisiopatologia , Laminina/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração , Glicoproteínas de Membrana/genética , Memória/fisiologia , Camundongos , Camundongos Knockout , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Especificidade de Órgãos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA