Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nat Rev Mol Cell Biol ; 25(8): 617-638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589640

RESUMO

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.


Assuntos
Fibrose , Miofibroblastos , Cicatrização , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Animais , Fibrose/metabolismo , Cicatrização/fisiologia , Transdução de Sinais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Epigênese Genética
3.
Nat Immunol ; 17(7): 797-805, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27135602

RESUMO

Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required.


Assuntos
Sistema Nervoso Central/imunologia , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/fisiologia , Microglia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Monócitos/imunologia , Parabiose , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
4.
Proc Natl Acad Sci U S A ; 119(44): e2209976119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279473

RESUMO

IFNγ is traditionally known as a proinflammatory cytokine with diverse roles in antimicrobial and antitumor immunity. Yet, findings regarding its sources and functions during the regeneration process following a sterile injury are conflicting. Here, we show that natural killer (NK) cells are the main source of IFNγ in regenerating muscle. Beyond this cell population, IFNγ production is limited to a small population of T cells. We further show that NK cells do not play a major role in muscle regeneration following an acute injury or in dystrophic mice. Surprisingly, the absence of IFNγ per se also has no effect on muscle regeneration following an acute injury. However, the role of IFNγ is partially unmasked when TNFα is also neutralized, suggesting a compensatory mechanism. Using transgenic mice, we showed that conditional inhibition of IFNGR1 signaling in muscle stem cells or fibro-adipogenic progenitors does not play a major role in muscle regeneration. In contrast to common belief, we found that IFNγ is not present in the early inflammatory phase of the regeneration process but rather peaks when macrophages are acquiring an anti-inflammatory phenotype. Further transcriptomic analysis suggests that IFNγ cooperates with TNFα to regulate the transition of macrophages from pro- to anti-inflammatory states. The absence of the cooperative effect of these cytokines on macrophages, however, does not result in significant regeneration impairment likely due to the presence of other compensatory mechanisms. Our findings support the arising view of IFNγ as a pleiotropic inflammatory regulator rather than an inducer of the inflammatory response.


Assuntos
Macrófagos , Fator de Necrose Tumoral alfa , Camundongos , Animais , Interferon gama , Citocinas , Regeneração , Anti-Inflamatórios , Músculos
5.
Exp Cell Res ; 410(1): 112947, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822813

RESUMO

While the majority of healthy skeletal muscle consists of multinucleated syncytial repetitive contractile myofibers, repaired by skeletal muscle stem cells when damaged, the maintenance of muscle function also requires a range of tissue-resident stromal populations. In fact, the careful orchestration of damage response processes upon muscle injury relies heavily on stromal cell contribution for effective repair. The two main types of muscle-resident stromal cells are fibro/adipogenic progenitors and mural cells. The latter is comprised of pericytes and vascular smooth muscle cells. Recent publications identifying common markers for stromal cell populations have allowed investigating population dynamics throughout the regenerative process at a higher resolution. Mounting evidence now suggests that subpopulations with distinct roles may exist among stromal cells. In various degenerative muscle wasting conditions, critical cross-talk and spatial signalling amongst various cell populations become dysregulated. This can result in the failure to curb pathological fibro/adipogenic progenitor proliferation and propensity for laying down excessive extracellular matrix, which in turn leads to fibrotic infiltration, reduced contractile units and gradual decline in muscle function. Restoration of physiologically appropriate stromal cell function is therefore just as crucial for therapeutic targeting as the homeostatic maintenance of muscle function.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Células Estromais/metabolismo , Animais , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Pericitos/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
J Cell Sci ; 133(12)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32434871

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent progenitors essential for organogenesis, tissue homeostasis, regeneration and scar formation. Tissue injury upregulates transforming growth factor ß (TGF-ß) signaling, which modulates myofibroblast fate, extracellular matrix remodeling and fibrosis. However, the molecular determinants of MSC differentiation and survival remain poorly understood. During canonical Wnt signaling, T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors regulate development and stemness, but the mechanisms by which injury-induced cues modulate their expression remain underexplored. Here, we studied the cell type-specific gene expression of TCF/LEF transcription factors and, more specifically, we investigated whether damage-induced TGF-ß signaling impairs the expression and function of TCF7L2 (also known as TCF4), using several models of MSCs, including skeletal muscle fibro-adipogenic progenitors. We show that TCF/LEFs are differentially expressed and that TGF-ß reduces the expression of TCF7L2 in MSCs but not in myoblasts. We also found that the ubiquitin-proteasome system regulates TCF7L2 proteostasis and participates in TGF-ß-mediated TCF7L2 protein downregulation. Finally, we show that TGF-ß requires histone deacetylase activity to repress the expression of TCF7L2. Thus, our work reports a novel interplay between TGF-ß and canonical Wnt signaling cascades in PDGFRα+ fibroblasts and suggests that this mechanism could be targeted in tissue repair and regeneration.


Assuntos
Fator de Crescimento Transformador beta , Via de Sinalização Wnt , Regulação para Baixo , Fibroblastos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Muscle Nerve ; 66(4): 513-522, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859452

RESUMO

INTRODUCTION/AIMS: Most mouse models of muscular dystrophy (MD) show mild phenotypes, which limits the translatability of experimental therapies to patients. A growing body of evidence suggests that MD is accompanied by metabolic abnormalities that could potentially exacerbate the primary muscle wasting process. Since thermoneutral (TN) housing of mice (~30°C) has been shown to affect many metabolic parameters, particularly when combined with a Western diet (WD), our aim was to determine whether the combination of TN and WD exacerbates muscle wasting in dysferlin-deficient BLAJ mice, a common model of limb-girdle MD type 2b (LGMD2b). METHODS: The 2-mo-old wild-type (WT) and BLAJ mice were housed at TN or room temperature (RT) and fed a WD or regular chow for 9 mo. Ambulatory function, muscle histology, and protein immunoblots of skeletal muscle were assessed. RESULTS: BLAJ mice at RT and fed a chow diet showed normal ambulation function similar to WT mice, whereas 90% of BLAJ mice under WD and TN combination showed ambulatory dysfunction (p < 0.001), and an up to 4.1-fold increase in quadriceps and gastrocnemius fat infiltration. Western blotting revealed decreased autophagy marker microtubules-associated protein 1 light chain 3-B (LC3BII/LC3BI) ratio and up-regulation of protein kinase B/AKT and ribosomal protein S6 phosphorylation, suggesting inefficient cellular debris and protein clearance in TN BLAJ mice fed a WD. Male and female BLAJ mice under TN and WD combination showed heterogenous fibro-fatty infiltrate composition. DISCUSSION: TN and WD combination exacerbates rodent LGMD2b without affecting WT mice. This improves rodent modeling of human MD and helps elucidate how metabolic abnormalities may play a causal role in muscle wasting.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Animais , Dieta Ocidental/efeitos adversos , Disferlina/genética , Disferlina/metabolismo , Feminino , Habitação , Humanos , Masculino , Camundongos , Músculo Esquelético , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo
8.
Genes Dev ; 28(4): 317-27, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532712

RESUMO

Chromatin modulators are emerging as attractive drug targets, given their widespread implication in human cancers and susceptibility to pharmacological inhibition. Here we establish the histone methyltransferase G9a/EHMT2 as a selective regulator of fast proliferating myeloid progenitors with no discernible function in hematopoietic stem cells (HSCs). In mouse models of acute myeloid leukemia (AML), loss of G9a significantly delays disease progression and reduces leukemia stem cell (LSC) frequency. We connect this function of G9a to its methyltransferase activity and its interaction with the leukemogenic transcription factor HoxA9 and provide evidence that primary human AML cells are sensitive to G9A inhibition. Our results highlight a clinical potential of G9A inhibition as a means to counteract the proliferation and self-renewal of AML cells by attenuating HoxA9-dependent transcription.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células-Tronco Hematopoéticas/enzimologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , Quinazolinas/farmacologia
9.
J Cell Sci ; 132(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31434718

RESUMO

Fibro-adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to investigate the role of functional cross-talk between TGF-ß and PDGFRα signaling pathways in the fate of FAPs. Here, we show that the number of FAPs correlates with TGF-ß levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-ß signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts and in two related mesenchymal cell lines. Moreover, TGF-ß promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-ß impairs the expression of PDGFRα-dependent immediate early genes in a TGFBR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-ß-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-ß and PDGFRα signaling pathways that is involved in regulating the biology of FAPs and/or MSCs.This article has an associated First Person interview with the first author of the paper.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Tirfostinas/farmacologia
10.
Breast Cancer Res ; 21(1): 103, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488209

RESUMO

BACKGROUND: Solid tumors produce proteins that can induce the accumulation of bone marrow-derived cells in various tissues, and these cells can enhance metastatic tumor growth by several mechanisms. 4T1 murine mammary tumors are known to produce granulocyte colony-stimulating factor (G-CSF) and increase the numbers of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) in tissues such as the spleen and lungs of tumor-bearing mice. While surgical resection of primary tumors decreases MDSC levels in the spleen, the longevity and impact of MDSCs and other immune cells in the lungs after tumor resection have been less studied. METHODS: We used mass cytometry time of flight (CyTOF) and flow cytometry to quantify MDSCs in the spleen, peripheral blood, and lungs of mice bearing orthotopic murine mammary tumors. We also tested the effect of primary tumor resection and/or gemcitabine treatment on the levels of MDSCs, other immune suppressor and effector cells, and metastatic tumor cells in the lungs. RESULTS: We have found that, similar to mice with 4T1 tumors, mice bearing metastatic 4T07 tumors also exhibit accumulation of CD11b+Gr1+ MDSCs in the spleen and lungs, while tissues of mice with non-metastatic 67NR tumors do not contain MDSCs. Mice with orthotopically implanted 4T1 tumors have increased granulocytic (G-) MDSCs, monocytic (M-) MDSCs, macrophages, eosinophils, and NK cells in the lungs. Resection of primary 4T1 tumors decreases G-MDSCs, M-MDSCs, and macrophages in the lungs within 48 h, but significant numbers of functional immunosuppressive G-MDSCs persist in the lungs for 2 weeks after tumor resection, indicative of an environment that can promote metastatic tumor growth. The chemotherapeutic agent gemcitabine depletes G-MDSCs, M-MDSCs, macrophages, and eosinophils in the lungs of 4T1 tumor-bearing mice, and we found that treating mice with gemcitabine after primary tumor resection decreases residual G-MDSCs in the lungs and decreases subsequent metastatic growth. CONCLUSIONS: Our data support the development of therapeutic strategies to target MDSCs and to monitor MDSC levels before and after primary tumor resection to enhance the effectiveness of immune-based therapies and improve the treatment of metastatic breast cancer in the clinic.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Neoplasias Mamárias Experimentais/patologia , Mastectomia , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Eosinófilos/patologia , Feminino , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células Supressoras Mieloides/imunologia , Gencitabina
11.
Mol Cell ; 43(4): 673-80, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21855805

RESUMO

Methylation of specific lysine residues in the C terminus of p53 is thought to govern p53-dependent transcription following genotoxic and oncogenic stress. In particular, Set7/9 (KMT7)-mediated monomethylation of human p53 at lysine 372 (p53K372me1) was suggested to be essential for p53 activation in human cell lines. This finding was confirmed in a Set7/9 knockout mouse model (Kurash et al., 2008). In an independent knockout mouse strain deficient in Set7/9, we have investigated its involvement in p53 regulation and find that cells from these mice are normal in their ability to induce p53-dependent transcription following genotoxic and oncogenic insults. Most importantly, we detect no impairment in canonical p53 functions in these mice, indicating that Set7/9-mediated methylation of p53 does not seem to represent a major regulatory event and does not appreciably control p53 activity in vivo.


Assuntos
Proteínas Metiltransferases/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose/genética , Ciclo Celular , Senescência Celular/genética , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Metiltransferases/metabolismo , Proteínas Metiltransferases/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Am J Respir Cell Mol Biol ; 57(6): 651-661, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28683207

RESUMO

Survival during lung injury requires a coordinated program of damage limitation and rapid repair. CD34 is a cell surface sialomucin expressed by epithelial, vascular, and stromal cells that promotes cell adhesion, coordinates inflammatory cell recruitment, and drives angiogenesis. To test whether CD34 also orchestrates pulmonary damage and repair, we induced acute lung injury in wild-type (WT) and Cd34-/- mice by bleomycin administration. We found that Cd34-/- mice displayed severe weight loss and early mortality compared with WT controls. Despite equivalent early airway inflammation to WT mice, CD34-deficient animals developed interstitial edema and endothelial delamination, suggesting impaired endothelial function. Chimeric Cd34-/- mice reconstituted with WT hematopoietic cells exhibited early mortality compared with WT mice reconstituted with Cd34-/- cells, supporting an endothelial defect. CD34-deficient mice were also more sensitive to lung damage caused by influenza infection, showing greater weight loss and more extensive pulmonary remodeling. Together, our data suggest that CD34 plays an essential role in maintaining vascular integrity in the lung in response to chemical- and infection-induced tissue damage.


Assuntos
Remodelação das Vias Aéreas , Antígenos CD34/genética , Endotélio Vascular/metabolismo , Lesão Pulmonar/metabolismo , Edema Pulmonar/metabolismo , Animais , Antígenos CD34/metabolismo , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Endotélio Vascular/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Camundongos , Camundongos Knockout , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/genética , Edema Pulmonar/patologia
13.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136132

RESUMO

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Via de Sinalização Hippo , Histona-Lisina N-Metiltransferase/genética , Humanos , Células MCF-7 , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pirrolidinas/química , Relação Estrutura-Atividade , Sulfonamidas/química , Tetra-Hidroisoquinolinas/química , Fatores de Transcrição , Proteínas de Sinalização YAP
14.
Biochem Biophys Res Commun ; 451(1): 148-51, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25073114

RESUMO

The cellular substrate underlying aberrant craniofacial connective tissue accumulation that occurs in disorders such as congenital infiltration of the face (CILF) remain elusive. Here we analyze the in vivo properties of a recently identified population of neural crest-derived CD31-:CD45-:alpha7-:Sca1+:PDGFRa+ fibro/adipogenic progenitors (NCFAPs). In serial transplantation experiments in which NCFAPs were prospectively purified and transplanted into wild type mice, NCFAPs were found to be capable of self-renewal while keeping their adipogenic potential. NCFAPs constitute the main responsive FAP fraction following acute masseter muscle damage, surpassing the number of mesoderm-derived FAPs (MFAPs) during the regenerative response. Lastly, NCFAPs differentiate into adipocytes during muscle regeneration in response to pro-adipogenic systemic cues. Altogether our data indicate that NCFAPs are a population of stem/primitive progenitor cells primarily involved in craniofacial muscle regeneration that can cause tissue degeneration when the damage co-occurs with an obesity inducing diet.


Assuntos
Adipócitos/citologia , Anormalidades Craniofaciais/patologia , Crista Neural/citologia , Células-Tronco/citologia , Adipogenia , Animais , Diferenciação Celular/fisiologia , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Regeneração , Transplante de Células-Tronco
15.
Acta Neuropathol ; 128(3): 363-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25107477

RESUMO

Microglia have long been the focus of much attention due to their strong proliferative response (microgliosis) to essentially any kind of damage to the CNS. More recently, we reached the realization that these cells play specific roles in determining progression and outcomes of essentially all CNS disease. Thus, microglia has ceased to be viewed as an accessory to underlying pathologies and has now taken center stage as a therapeutic target. Here, we review how our understanding of microglia's involvement in promoting or limiting the pathogenesis of diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, multiple sclerosis, X-linked adrenoleukodystrophy (X-ALD) and lysosomal storage diseases (LSD) has changed over time. While strategies to suppress the deleterious and promote the virtuous functions of microglia will undoubtedly be forthcoming, replacement of these cells has already proven its usefulness in a clinical setting. Over the past few years, we have reached the realization that microglia have a developmental origin that is distinct from that of bone marrow-derived myelomonocytic cells. Nevertheless, microglia can be replaced, in specific situations, by the progeny of hematopoietic stem cells (HSCs), pointing to a strategy to engineer the CNS environment through the transplantation of modified HSCs. Thus, microglia replacement has been successfully exploited to deliver therapeutics to the CNS in human diseases such as X-ALD and LSD. With this outlook in mind, we will discuss the evidence existing so far for microglial involvement in the pathogenesis and the therapy of specific CNS disease.


Assuntos
Doenças do Sistema Nervoso Central , Microglia/fisiologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/fisiopatologia , Doenças do Sistema Nervoso Central/terapia , Humanos
16.
Cell Stem Cell ; 31(5): 597-616, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593798

RESUMO

Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.


Assuntos
Células-Tronco , Humanos , Células-Tronco/imunologia , Células-Tronco/citologia , Animais , Transplante de Células-Tronco , Imunidade , Sistema Imunitário
17.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38357523

RESUMO

Background: Fibro-adipogenic progenitors (FAP) are muscle resident mesenchymal stem cells pivotal for regulation of myofiber repair. Experimental results show in addition involvement in a range of other pathological conditions and potential for pharmacological intervention. FAP histopathology in human muscle biopsies is largely unknown, but has potential to inform translational research. Methods: CD10+ FAPs in 32 archival muscle biopsies from 8 groups (normal, dermatomyositis, inclusion body myositis (IBM), anti-synthetase syndrome, immune-mediated necrotizing myopathy (IMNM), denervation, type 2 atrophy, rhabdomyolysis) were visualized by CD10 immunohistochemistry and their histology compared. Groups are compared by semi-quantitative scoring. Results: Histological activation of endomysial CD10+ FAPs includes prominent expansion of a network of cell processes surrounding muscle fibers, as well as endomysial cell clusters evidencing proliferation. Prominence of periarteriolar processes is a notable feature in some pathologies. FAP activation is often associated with fiber degeneration/regeneration, foci of inflammation, and denervation in keeping with experimental results. Type 2 atrophy shows no evidence of FAP activation. Dermatomyositis and anti-synthetase syndrome associated myositis demonstrate diffuse activation. Conclusion: Assessment of CD10+ FAP activation is routinely possible using CD10 immunohistochemistry and demonstrates several patterns in keeping with preclinical results. Prominent expansion of FAP processes surrounding myofibers suggests enhanced interaction between myofiber/basement membranes and FAPs during activation. The presence of diffuse FAP activation in dermatomyositis biopsies unrelated to fiber repair raises the possibility of FAP activation as part of the autoimmune process. Future diagnostic applications, clinical significance and therapeutic potential remain to be elucidated.

18.
Front Immunol ; 15: 1368142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585275

RESUMO

Eosinophils are a type of granulocyte named after the presence of their eosin-stained granules. Traditionally, eosinophils have been best known to play prominent roles in anti-parasitic responses and mediating allergic reactions. Knowledge of their behaviour has expanded with time, and they are now recognized to play integral parts in the homeostasis of gastrointestinal, respiratory, skeletal muscle, adipose, and connective tissue systems. As such, they are implicated in a myriad of pathologies, and have been the target of several medical therapies. This review focuses on the lifespan of eosinophils, from their origins in the bone marrow, to their tissue-resident role. In particular, we wish to highlight the functions of eosinophils in non-mucosal tissues with skeletal muscle and the adipose tissues as examples, and to discuss the current understanding of their participation in diseased states in these tissues.


Assuntos
Adiposidade , Eosinófilos , Humanos , Eosinófilos/patologia , Obesidade/patologia
19.
Dev Cell ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39383865

RESUMO

Within the thymus, regulation of the cellular crosstalk directing T cell development depends on spatial interactions within specialized niches. To create a spatially defined map of tissue niches guiding human postnatal T cell development, we employed the multidimensional imaging platform co-detection by indexing (CODEX) as well as cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) and assay for transposase accessible chromatin sequencing (ATAC-seq). We generated age-matched 4- to 5-month-old human postnatal thymus datasets for male and female donors, identifying significant sex differences in both T cell and thymus biology. We demonstrate a possible role for JAG ligands in directing thymic-like dendritic cell development, identify important functions of a population of extracellular matrix (ECM)- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent an age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, providing an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.

20.
Blood ; 118(7): 1766-73, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21730353

RESUMO

Strategies for expanding hematopoietic stem cells (HSCs) could have significant utility for transplantation-based therapies. However, deleterious consequences of such manipulations remain unknown. Here we examined the impact of HSC self-renewal divisions in vitro and in vivo on their subsequent regenerative and continuing ability to sustain blood cell production in the absence of telomerase. HSC expansion in vitro was obtained using a NUP98-HOXA10hd transduction strategy and, in vivo, using a serial transplant protocol. We observed ~ 10kb telomere loss in leukocytes produced in secondary mice transplanted with HSCs regenerated in primary recipients of NUP98-HOXA10hd-transduced and in vitro-expanded Tert(-/-) HSCs 6 months before. The second generation leukocytes also showed elevated expression of γH2AX (relative to control) indicative of greater accumulating DNA damage. In contrast, significant telomere shortening was not detected in leukocytes produced from freshly isolated, serially transplanted wild-type (WT) or Tert(-/-) HSCs, suggesting that HSC replication posttransplant is not limited by telomere shortening in the mouse. These findings document a role of telomerase in telomere homeostasis, and in preserving HSC functional integrity on prolonged self-renewal stimulation.


Assuntos
Dano ao DNA , Células-Tronco Hematopoéticas/enzimologia , Telomerase/metabolismo , Telômero , Animais , Proliferação de Células , Deleção de Genes , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/genética , Camundongos , Camundongos Endogâmicos C57BL , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA