RESUMO
Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genéticaRESUMO
Mitochondrial DNA remains a cornerstone for molecular ecology, especially for study species from which high-quality tissue samples cannot be easily obtained. Methods using mitochondrial markers are usually reliant on reference databases, but these are often incomplete. Furthermore, available mitochondrial genomes often lack crucial metadata, such as sampling location, limiting their utility for many analyses. Here, we assembled 205 new mitochondrial genomes for platyrrhine primates, most from the Amazon and with known sampling locations. We present a dated mitogenomic phylogeny based on these samples along with additional published platyrrhine mitogenomes, and use this to assess support for the long-standing riverine barrier hypothesis (RBH), which proposes that river formation was a major driver of speciation in Amazonian primates. Along the Amazon, Negro, and Madeira rivers, we found mixed support for the RBH. While we identified divergences that coincide with a river barrier, only some occur synchronously and also overlap with the proposed dates of river formation. The most compelling evidence is for the Amazon river potentially driving speciation within bearded saki monkeys (Chiropotes spp.) and within the smallest extant platyrrhines, the marmosets and tamarins. However, we also found that even large rivers do not appear to be barriers for some primates, including howler monkeys (Alouatta spp.), uakaris (Cacajao spp.), sakis (Pithecia spp.), and robust capuchins (Sapajus spp.). Our results support a more nuanced, clade-specific effect of riverine barriers and suggest that other evolutionary mechanisms, besides the RBH and allopatric speciation, may have played an important role in the diversification of platyrrhines.
Assuntos
Genoma Mitocondrial , Rios , Animais , Evolução Biológica , Genoma Mitocondrial/genética , Filogenia , PrimatasRESUMO
The present work aimed to analyze the ectoparasite-host interaction network and possible differences of this interaction related to two seasonal periods and host sex. During November 2016 and July 2017, non-flying small mammals were captured in 17 forest fragments located in the southern portion of the Amazon biome. We captured 96 individuals belonging to 10 host species that were parasitized with a total of 3668 ectoparasites. Overall, we identified 24 ectoparasite taxa belonging to the mite and insect groups Ixodida (ticks), Mesostigmata, Sarcoptiformes, Trombidiformes (mites), Phthiraptera (lice), and Siphonaptera (fleas). The interaction network between all ectoparasites and hosts showed significant deviation from random, with moderately high specialization index (H2' = 0.80). There was seasonal difference in prevalence for Amblyomma cajennense (Fabricius) sensu stricto (s.s), Amblyomma coelebs Neumann and larvae of Amblyomma. This difference was also found in the mean intensity of infestation of Amblyomma larvae and the mite Tur aragaoi (Fonseca). Only mean intensity of infestation differed in relation to host sex for the species Marmosa constantiae Thomas. Our results demonstrate that specificity between ectoparasites and small mammals in this region is moderately high and that the pattern of aggregation of some ectoparasite taxa differed between two seasons, as well as between sexes in M. constantiae.
Assuntos
Ectoparasitoses/veterinária , Mamíferos/parasitologia , Ácaros , Ftirápteros , Sifonápteros , Animais , Brasil , Feminino , Masculino , Estações do Ano , Fatores SexuaisRESUMO
BACKGROUND: The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. RESULTS: The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. CONCLUSIONS: Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.
Assuntos
Coloração Cromossômica , Cromossomos de Mamíferos/genética , Filogenia , Sigmodontinae/genética , Animais , Brasil , Sondas de DNA , Geografia , Cariótipo , SinteniaRESUMO
The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. molochâ¯+â¯P. vieirai. The species EOO is 10,166,653â¯ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24â¯years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.
Assuntos
Pitheciidae/classificação , Animais , Teorema de Bayes , Brasil , Citocromos b/genética , Ecossistema , Espécies em Perigo de Extinção , Genoma , Mitocôndrias/genética , Filogenia , Pitheciidae/anatomia & histologia , Pitheciidae/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The spiny rats of the genus Proechimys have a wide distribution in the Amazon, covering all areas of endemism of this region. We analyzed the karyotype and cytochrome b (Cyt b) sequences in Proechimys goeldii from 6 localities representing 3 interfluves of the eastern Amazon. A clear separation of P. goeldii into 2 monophyletic clades was observed, both chromosomally and based on Cyt b sequences: cytotype A (2n = 26x2640;/27x2642;, NF = 42) for samples from the Tapajos-Xingu interfluve and cytotype B (2n = 24x2640;/25x2642;, NF = 42) for samples from the Xingu-Tocantins interfluve and east of the Tocantins River. The karyotypes differ in a pericentric inversion and a centric fusion/fission and an average nucleotide divergence of 6.1%, suggesting cryptic species. Meiotic analysis confirmed the presence of a XX/XY1Y2 multiple sex chromosome determination system for both karyotypes. The karyotypes also vary from the literature (2n = 24, NF = 42, XX/XY). The autosome translocated to the X chromosome is different both in size and morphology to P. cf. longicaudatus, which also has a multiple sex chromosome determination system (2n = 14x2640;/15x2640;x2642;/16x2640;/17x2642;, NF = 14). The Xingu River is a barrier that separates populations of P. goeldii, thus maintaining their allopatric nature and providing an explanation for the molecular and cytogenetic patterns observed for the Xingu River but not the Tocantins River.
Assuntos
Ecossistema , Evolução Molecular , Especiação Genética , Rios , Roedores/classificação , Roedores/genética , Cromossomos Sexuais/genética , Animais , Brasil , Inversão Cromossômica , Citocromos b/genética , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino , Filogenia , Especificidade da Espécie , Translocação GenéticaRESUMO
Neacomys (Sigmodontinae) comprises 8 species mainly found in the Amazonian region. We describe 5 new karyotypes from Brazilian Amazonia: 2 cytotypes for N. paracou (2n = 56/FNa = 62-66), 1 for N. dubosti (2n = 64/FNa = 68), and 2 for Neacomys sp. (2n = 58/FNa = 64-70), with differences in the 18S rDNA. Telomeric probes did not show ITS. We provide a phylogeny using Cytb, and the analysis suggests that 2n = 56 with a high FNa is ancestral for the genus, as found in N. paracou, being retained by the ancestral forms of the other species, with an increase in 2n occurring independently in N. spinosus and N. dubosti. Alternatively, an increase in 2n may have occurred in the ancestral taxon of the other species, followed by independent 2n-reduction events in Neacomys sp. and in the ancestral species of N. tenuipes, N. guianae, N. musseri, and N. minutus. Finally, a drastic reduction event in the diploid number occurred in the ancestral species of N. musseri and N. minutus which exhibit the lowest 2n of the genus. The karyotypic variations found in both intra- and interspecific samples, associated with the molecular phylogeny, suggest a chromosomal evolution with amplification/deletion of constitutive heterochromatin and rearrangements including fusions, fissions, and pericentric inversions.
Assuntos
Evolução Molecular , Cariotipagem , Roedores/genética , Animais , Bandeamento Cromossômico , Filogenia , Roedores/classificaçãoRESUMO
Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.
Assuntos
Cariótipo , Cariotipagem/métodos , Sigmodontinae/classificação , Sigmodontinae/genética , Animais , Brasil , Bandeamento Cromossômico , Coloração Cromossômica , Sondas de DNA/genética , Diploide , Feminino , Citometria de Fluxo , Masculino , Metáfase , Especificidade da Espécie , Telômero/genéticaRESUMO
Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.
Assuntos
Roedores , Sigmodontinae , Animais , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversão Cromossômica , Coloração CromossômicaRESUMO
Although Bartonella spp. have been worldwide described in rodents and bats, few studies have reported these agents in marsupials. The present work aimed to investigate the occurrence and genetic diversity of Bartonella in small mammals (rodents, marsupials, and bats) and associated ectoparasites in two ecoregions (Amazonia and Cerrado biomes) in midwestern Brazil. For this purpose, DNA samples from 378 specimens of small mammals (128 rodents, 111 marsupials, and 139 bats) and 41 fleas (Siphonaptera) were screened for the Bartonella genus employing a quantitative real-time PCR assay (qPCR) based on the nuoG (nicotinamide adenine dinucleotide dehydrogenase gamma subunit) gene. Then, positive samples in qPCR were submitted to conventional PCR (cPCR) assays targeting the gltA, ftsZ, and rpoB genes. One (0.78 %) rodent, 23 (16.54 %) bats, and 3 (7.31 %) fleas showed positive results in the qPCR for Bartonella sp. After cPCR amplification and sequencing, 13 partial Bartonella DNA sequences of the following genes were obtained only from bats´ blood samples: 9 gltA (citrate synthase), 3 ftsZ (cell division protein), and 1 rpoB (RNA polymerase beta subunit). The maximum likelihood inference based on the gltA gene positioned the obtained sequences in three different clades, closely related to Bartonella genotypes previously detected in other bat species and bat flies sampled in Brazil and other countries from Latin America. Similarly, the ftsZ sequences clustered in two different clades with sequences described in bats from Brazil, other countries from Latin America, and Georgia (eastern Europe). Finally, the Bartonella rpoB from a specimen of Lophostoma silvicolum clustered with a Bartonella sp. sequence obtained from a Noctilio albiventris (KP715475) from French Guiana. The present study provided valuable insights into the diversity of Bartonella genotypes infecting bats from two ecoregions (Amazonia and Cerrado) in midwestern Brazil and emphasized that further studies should be conducted regarding the description and evaluation of different lineages of Bartonella in wild small mammals and their ectoparasites in different Brazilian biomes.
Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Infestações por Pulgas , Marsupiais , Sifonápteros , Animais , Bartonella/genética , Brasil/epidemiologia , Mamíferos/parasitologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Roedores , Ecossistema , FilogeniaRESUMO
BACKGROUND: Proechimys is the most diverse genus in family Echimyidae, comprising 25 species (two of which are polytypic) and 39 taxa. Despite the numerous forms of this rodent and their abundance in nature, there are many taxonomic problems due to phenotypic similarities within the genus and high intraspecific variation. Extensive karyotypic variation has been noted, however, with diploid numbers (2n) ranging from 14 to 62 chromosomes. Some heteromorphism can be found, and 57 different karyotypes have been described to date. RESULTS: In the present work, we describe a cytotype with a very low 2n. Specimens of Proechimys cf. longicaudatus were collected from two different places in northern Mato Grosso state, Brazil (12°54â³S, 52°22â³W and 9°51'17â³S, 58°14'53â³W). The females and males had 16 and 17 chromosomes, respectively; all chromosomes were acrocentric, with the exception of the X chromosome, which was bi-armed. The sex chromosome system was found to be XY1Y2, originating from a Robertsonian rearrangement involving the X and a large acrocentric autosome. Females had two Neo-X chromosomes, and males had one Neo-X and two Y chromosomes. NOR staining was found in the interstitial region of one autosomal pair. CONCLUSIONS: Comparison of this karyotype with those described in the literature revealed that Proechimys with similar karyotypes had previously been collected from nearby localities. We therefore suggest that this Proechimys belongs to a different taxon, and is either a new species or one that requires reassessment.
Assuntos
Roedores/classificação , Roedores/genética , Animais , Brasil , Cromossomos de Mamíferos , Feminino , Cariótipo , Masculino , Roedores/fisiologia , Processos de Determinação Sexual , Cromossomo X , Cromossomo YRESUMO
Morphological, molecular and chromosomal studies in the genera Lonchothrix and Mesomys have contributed to a better understanding of taxonomic design, phylogenetic relationships and karyotypic patterns. Recent molecular investigations have shown a yet undescribed diversity, suggesting that these taxa are even more diverse than previously assumed. Furthermore, some authors have questioned the limits of geographic distribution in the Amazon region for the species M. hispidus and M. stimulax. In this sense, the current study sought to understand the karyotypic evolution and geographic limits of the genus Mesomys, based on classical (G- and C-banding) and molecular cytogenetic analysis (FISH using rDNA 18S and telomeric probes) and through the sequencing of mitochondrial genes Cytochrome b (Cytb) and Cytochrome Oxidase-Subunit I (CO using phylogeny, species delimitation and time of divergence, from samples of different locations in the Brazilian Amazon. The species M. stimulax and Mesomys sp. presented 2n = 60/FN = 110, while M. hispidus presented 2n = 60/FN = 112, hitherto unpublished. Molecular dating showed that Mesomys diversification occurred during the Plio-Pleistocene period, with M. occultus diverging at around 5.1 Ma, followed by Mesomys sp. (4.1 Ma) and, more recently, the separation between M. hispidus and M. stimulax (3.5 Ma). The ABGD and ASAP species delimiters support the formation of 7 and 8 potential species of the genus Mesomys, respectively. Furthermore, in both analyzes Mesomys sp. was recovered as a valid species. Our multidisciplinary approach involving karyotypic, molecular and biogeographic analysis is the first performed in Mesomys, with the description of a new karyotype for M. hispidus, a new independent lineage for the genus and new distribution data for M. hispidus and M. stimulax.
Assuntos
Variação Genética , Roedores , Animais , Roedores/genética , Brasil , Filogenia , CariótipoRESUMO
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Assuntos
Evolução Biológica , Variação Genética , Primatas , Animais , Humanos , Genoma , Taxa de Mutação , Filogenia , Primatas/genética , Densidade DemográficaRESUMO
A new species of nematode, Pterygodermatites (Paucipectines) sinopiensis n. sp. is described based on specimens recovered from the intestine of the white-bellied woolly mice opossum, Marmosa constantiae, trapped in the municipality of Sinop, Mato Grosso state, Brazil. The genus Pterygodermatites has 21 species described in mammals worldwide, and to date, only two species have been described for marsupials in Brazil. The new species is characterized by the presence of 23 small denticles and by the presence of 38-40 and 65 pairs of the cuticular processes in male and female species, respectively. Additionally, male species possess three ventral precloacal fans, and in female species, the cuticular processes are divided into 41 pairs of comb-like and 24 pairs of spine-like processes; the vulva opens approximately in pair 41. This study describes the parasite species fifth of marsupials in the Neotropical region.
RESUMO
Although the common opossum, Didelphis marsupialis (Didelphimorphia: Didelphidae) is a species widely distributed in South America, knowledge about their helminth parasites and helminth community structure is scarce. The aims of this study were to describe the species composition and analyze the structure of the helminth community of the common opossum in an area of the Amazonian Arc in northern Mato Grosso. The helminths were recovered, counted, and identified in 32 individuals. Overall, 10,198 specimens were categorized into 9 helminths taxa (seven nematodes, one cestode, and one acanthocephalan). The most abundant species were Aspidodera raillieti, Viannaia hamata, and Travassostrongylus orloffi. No statistically significant differences in helminth abundance and prevalence were observed between host sexes. However, young hosts had higher abundance and prevalence of Didelphonema longispiculata, whereas Oligacanthorhynchus microcephalus had higher abundance and prevalence in adult hosts. This was the first study to analyze the helminth fauna and helminth community structure of D. marsupialis in the Amazonian Arc. This is the first report of the presence of A. raillieti, D. longispiculata, T. orloffi, T. minuta, V. hamata, and O. microcephalus in the state of Mato Grosso, Brazil.
Assuntos
Didelphis , Helmintíase Animal , Helmintos , Marsupiais , Animais , Brasil , Didelphis/parasitologia , Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologiaRESUMO
Didelphonema longispiculata (Hill, 1939), a gastric nematode parasite of the black-eared opossum, Didelphis marsupialis Linnaeus, 1758, collected from 2 municipalities of Mato Grosso state, Brazil, in the ecotone region of the Amazon and Cerrado biomes was analyzed with integrative taxonomy using light and scanning electron microscopy (SEM) for morphological studies and sequencing of the 18S small subunit ribosomal RNA for phylogenetic inference through maximum likelihood and Bayesian phylogenetic inference. Here details of the helminth surface, oral aperture with octagonal border, pseudo- and inter-labia, amphids, external cephalic papillae, 2 dorsal and ventral internal plates distally indented, and stoma with strongly chitinized wall are presented. Caudal male papillae, spicules, female vulva, anus, and caudal tip were detailed using SEM. Morphological characteristics and phylogenetic data corroborated the taxonomic placement of the genus Didelphonema within the subfamily Ascaropsinae.
Assuntos
Didelphis , Nematoides , Spiruroidea , Animais , Feminino , Masculino , Didelphis/parasitologia , Filogenia , Teorema de Bayes , Brasil/epidemiologiaRESUMO
X-autosome translocation (XY1Y2) has been reported in distinct groups of vertebrates suggesting that the rise of a multiple sex system within a species may act as a reproductive barrier and lead to speciation. The viability of this system has been linked with repetitive sequences located between sex and autosomal portions of the translocation. Herein, we investigate Oecomys auyantepui, using chromosome banding and Fluorescence In Situ Hybridization with telomeric and Hylaeamys megacephalus whole-chromosome probes, and phylogenetic reconstruction using mtDNA and nuDNA sequences. We describe an amended karyotype for O. auyantepui (2n = 64â65â/FNa = 84) and report for the first time a multiple sex system (XX/XY1Y2) in Oryzomyini rodents. Molecular data recovered O. auyantepui as a monophyletic taxon with high support and cytogenetic data indicate that O. auyantepui may exist in two lineages recognized by distinct sex systems. The Neo-X exhibits repetitive sequences located between sex and autosomal portions, which would act as a boundary between these two segments. The G-banding comparisons of the Neo-X chromosomes of other Sigmodontinae taxa revealed a similar banding pattern, suggesting that the autosomal segment in the Neo-X can be shared among the Sigmodontinae lineages with a XY1Y2 sex system.
Assuntos
Coloração Cromossômica , Sigmodontinae , Animais , Hibridização in Situ Fluorescente , Filogenia , Roedores/genética , Cromossomos Sexuais/genética , Sigmodontinae/genéticaRESUMO
Mesomys Wagner, 1845 (Rodentia, Echimyidae, Eumysopinae) currently has four recognized species, three of which occur in Brazil: Mesomys hispidus (probably a species complex), M. occultus, and M. stimulax. Mesomys leniceps is found in montane forests of northern Peru. Mesomys stimulax, the focus of the present study, has a distribution that is restricted to the central and eastern Amazonia south of the Amazon River, extending from the left bank of the Tapajós River to the right bank of the Tocantins River, and south to the southeast portion of Pará State. The genus presents karyotypes with diploid number 2n = 60 and Fundamental Number (FN) = 116 for M. hispidus and M. stimulax, and 2n = 42, FN = 54 for M. occultus. We studied the karyotype of a female specimen of M. stimulax collected from the Tapirapé-Aquiri National Forest, Marabá, Pará, Brazil, in the Xingu/Tocantins interfluvium. The obtained karyotype (2n = 60 and FN = 110) differs from that described in the literature for both M. stimulax and M. hispidus by exhibiting more biarmed chromosomes, probably due to pericentric inversions and/or centromeric repositioning, and exhibiting differences in the amount and distribution of constitutive heterochromatin (CH). These results suggest that, similar to what has already been proposed for M. hispidus, M. stimulax may represent a species complex and/or cryptic species. The mechanisms of chromosomal diversification in Mesomys and the biogeographic implications are discussed reinforcing the need for broad systematic review for Mesomys.
RESUMO
Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46-52) and high FN (72-80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.
Assuntos
Sigmodontinae , Animais , Hibridização in Situ Fluorescente , RoedoresRESUMO
Amazonia has the richest primate fauna in the world. Nonetheless, the diversity and distribution of Amazonian primates remain little known and the scarcity of baseline data challenges their conservation. These challenges are especially acute in the Amazonian arc of deforestation, the 2500 km long southern edge of the Amazonian biome that is rapidly being deforested and converted to agricultural and pastoral landscapes. Amazonian marmosets of the genus Mico are little known endemics of this region and therefore a priority for research and conservation efforts. However, even nascent conservation efforts are hampered by taxonomic uncertainties in this group, such as the existence of a potentially new species from the Juruena-Teles Pires interfluve hidden within the M. emiliae epithet. Here we test if these marmosets belong to a distinct species using new morphological, phylogenomic, and geographic distribution data analysed within an integrative taxonomic framework. We discovered a new, pseudo-cryptic Mico species hidden within the epithet M. emiliae, here described and named after Horacio Schneider, the pioneer of molecular phylogenetics of Neotropical primates. We also clarify the distribution, evolutionary and morphological relationships of four other Mico species, bridging Linnean, Wallacean, and Darwinian shortfalls in the conservation of primates in the Amazonian arc of deforestation.