Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7375, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513450

RESUMO

Gestational diabetes mellitus (GDM) plus rectus abdominis muscle (RAM) myopathy predicts long-term urinary incontinence (UI). Atrophic and stiff RAM are characteristics of diabetes-induced myopathy (DiM) in pregnant rats. This study aimed to determine whether swimming exercise (SE) has a therapeutic effect in mild hyperglycemic pregnant rats model. We hypothesized that SE training might help to reverse RAM DiM. Mild hyperglycemic pregnant rats model was obtained by a unique subcutaneous injection of 100 mg/kg streptozotocin (diabetic group) or citrate buffer (non-diabetic group) on the first day of life in Wistar female newborns. At 90 days of life, the rats are mated and randomly allocated to remain sedentary or subjected to a SE protocol. The SE protocol started at gestational day 0 and consisted of 60 min/day for 6 days/week in a period of 20 days in a swim tunnel. On day 21, rats were sacrificed, and RAM was collected and studied by picrosirius red, immunohistochemistry, and transmission electron microscopy. The SE protocol increased the fiber area and diameter, and the slow-twitch and fast-twitch fiber area and diameter in the diabetic exercised group, a finding was also seen in control sedentary animals. There was a decreased type I collagen but not type III collagen area and showed a similar type I/type III ratio compared with the control sedentary group. In conclusion, SE during pregnancy reversed the RAM DiM in pregnant rats. These findings may be a potential protocol to consider in patients with RAM damage caused by GDM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Doenças Musculares , Condicionamento Físico Animal , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Feminino , Doenças Musculares/etiologia , Doenças Musculares/terapia , Gravidez , Ratos , Ratos Wistar , Estreptozocina/efeitos adversos , Natação/fisiologia
2.
J Chem Neuroanat ; 81: 10-17, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159659

RESUMO

Melatonin is involved in the temporal organization of several physiological and behavioral events, controlled by hypothalamic nuclei, like sleep, feeding, reproduction and metabolic modulation and acts through two types of high-affinity G protein-coupled membrane receptors: MT1 and MT2. This study aimed to investigate the expression of MT1 and MT2 receptors proteins in four hypothalamic nuclei, i.e., SCN, supraoptic (SON), paraventricular (PVN) and anteroventral periventricular nuclei (AVPV), of the diurnal primate Sapajus apella using immunohistochemistry. Since these areas are involved in the expression of biological rhythms, they are candidates to have variations in their neurochemistry, so the MT1 and MT2 expression has been analyzed at a point in light and another in the dark phase. Both receptors were found to have day/night differences in the four hypothalamic nuclei with an apparent inverse expression in the SCN compared with the other areas. These differences could be related to the idea that the individual should be prepared to respond by different ways to melatonin signal within the several processes and can contribute to the efficacy of melatonin ligands or melatonin in therapies.


Assuntos
Ritmo Circadiano/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Animais , Cebus , Expressão Gênica , Masculino , Primatas , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA