Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 16(3): 392-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19022698

RESUMO

This study was undertaken to examine ultrasound (US) mechanisms and their impact on chemical and biological effects in vitro as a function of changing pulse repetition frequency (PRF) from 0.5 to 100Hz using a 1MHz-generator at low-intensities and 50% duty factor (DF). The presence of inertial cavitation was detected by electron paramagnetic resonance (EPR) spin-trapping of hydroxyl radicals resulting from sonolysis of water. Non-cavitational effects were evaluated by studying the extent of sucrose hydrolysis measured by UV spectrophotometry. Biological effects were assessed by measuring the extent of cell killing and apoptosis induction in U937 cells using Trypan blue dye exclusion test and flow cytometry, respectively. The results indicate significant PRF dependence with respect to hydroxyl radical formation, cell killing and apoptosis induction. The lowest free radical formation and cell killing and the highest cell viability were found at 5Hz (100ms pulse duration). On the other hand, no correlation was found between sucrose hydrolysis and PRF. To our knowledge, this is the first report to be devoted to study the impact of low PRFs at low-intensities on US-induced chemical and biological effects and the mechanisms involved. This study has introduced the role of "US streaming" (convection); a forgotten factor in optimization studies, and explored its importance in comparison to standing waves.


Assuntos
Apoptose , Radical Hidroxila/síntese química , Sonicação , Sobrevivência Celular , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Humanos , Hidrólise , Radical Hidroxila/química , Sacarose/química , Células Tumorais Cultivadas , Água/química
2.
Rev Sci Instrum ; 83(7): 074705, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22852710

RESUMO

We demonstrate a high power repetitive rf source using gyromagnetic nonlinear transmission line to produce rf oscillations. Saturated NiZn ferrites act as active nonlinear medium first sharpening the pumping high voltage nanosecond pulse and then radiating at central frequency of about 1 GHz: shock rise time excites gyromagnetic precession in ferrites forming damping rf oscillations. The optimal length of nonlinear transmission line was found to be of about 1 m. SINUS-200 high voltage driver with Tesla transformer incorporated into pulse forming line has been designed and fabricated to produce bursts of 1000 pulses with 200 Hz repetition rate. A band-pass filter and mode-converter have been designed to extract rf pulse from low-frequency component and to form TE(11) mode of circular waveguide with linear polarization. A wide-band horn antenna has been fabricated to form Gaussian distribution of radiation pattern. The peak value of electric field strength of a radiated pulse at the distance of 3.5 m away from antenna is measured to be 160 kV/m. The corresponding rf peak power of 260 MW was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA