Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 58(4): 786-807, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19568805

RESUMO

We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were approximately10(3) cells mL(-1). Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Microbiologia da Água , Água/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Lipídeos/análise , Mineração , Nunavut , Filogenia , RNA Ribossômico 16S/genética , Enxofre/análise , Água/química
2.
Appl Environ Microbiol ; 68(5): 2120-32, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976080

RESUMO

The transport characteristics of two adhesion-deficient, indigenous groundwater strains, Comamonas sp. strain DA001 and Erwinia herbicola OYS2-A, were studied by using intact sediment cores (7 by 50 cm) from Oyster, Va. Both strains are gram-negative rods (1.10 by 0.56 and 1.56 by 0.46 microm, respectively) with strongly hydrophilic membranes and a slightly negative surface charge. The two strains exhibited markedly different behaviors when they were transported through granular porous sediment. To eliminate any effects of physical and chemical heterogeneity on bacterial transport and thus isolate the biological effect, the two strains were simultaneously injected into the same core. DA001 cells were metabolically labeled with (35)S and tagged with a vital fluorescent stain, while OYS2-A cells were metabolically labeled with (14)C. The fast decay of (35)S allowed deconvolution of the two isotopes (and therefore the two strains). Dramatic differences in the transport behaviors were observed. The breakthrough of DA001 and the breakthrough of OYS2-A both occurred before the breakthrough of a conservative tracer (termed differential advection), with effluent recoveries of 55 and 30%, respectively. The retained bacterial concentration of OYS2-A in the sediment was twofold higher than that of DA001. Among the cell properties analyzed, the statistically significant differences between the two strains were cell length and diameter. The shorter, larger-diameter DA001 cells displayed a higher effluent recovery than the longer, smaller-diameter OYS2-A cells. CXTFIT modeling results indicated that compared to the DA001 cells, the OYS2-A cells experienced lower pore velocity, higher porosity, a higher attachment rate, and a lower detachment rate. All these factors may contribute to the observed differences in transport.


Assuntos
Comamonas/fisiologia , Erwinia/fisiologia , Sedimentos Geológicos/microbiologia , Transporte Biológico/fisiologia , Comunicação Celular , Modelos Biológicos , Reprodutibilidade dos Testes
3.
Environ Sci Technol ; 36(5): 891-900, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11918012

RESUMO

Bacterial transport experiments were conducted using intact sediment cores collected from sites on the Delmarva Peninsula near South Oyster, VA, to delineate the relative importance of physical and chemical heterogeneity in controlling transport of an adhesion-deficient bacterial strain. Electron microscopy revealed that the sediments consisted of quartz and feldspar with a variable amount of clay and iron and aluminum hydroxide coatings on the grains. A nonmotile, gram-negative indigenous groundwater strain, designated as Comamonas sp. DA001, was injected into the cores along with a conservative tracer bromide (Br). DA001 cells were 1.2 x 0.6 microm in size with a hydrophilic surface and a slightly negative surface charge. Bacterial breakthrough preceded that of Br. This differential advection phenomenon can be accounted for by reduction of the effective porosity for the bacteria relative to Br. The distribution of cells remaining in the core as determined by scintillation counting and phosphor imaging techniques was variable, ranging from nearly uniform concentrations throughout the core to exponentially decreasing concentrations with distance from the point of injection. The fraction of bacterial retention in the core was positively correlated with the abundance of the metal hydroxides and negatively correlated with grain size. Because grain size was inversely correlated with the abundance of the metal hydroxide coatings, it was necessary to separate the effects of grain size and mineralogy. The fraction of the bacterial retention accounting for the effect of grain size, the collision efficiency, exhibited no correlation with the abundance of the metal hydroxides, indicating that the bacterial retention was primarily controlled by grain size. Reasons for the lack of influence of mineralogy on bacterial transport include (i) the slightly negatively charged bacterial surfaces; (ii) an insufficient heterogeneity of sediment surface properties; and (iii) the masking of the positive charge of the metal hydroxide surfaces by adsorbed organic carbon (up to 1180 ppm). This study demonstrates that the laboratory-based bacterial transport experiments are effective in delineating physical versus chemical controlling factors and provide an important link to field-based bacterial transport studies.


Assuntos
Bactérias , Aderência Bacteriana , Sedimentos Geológicos/microbiologia , Carbono , Sedimentos Geológicos/química , Microscopia Eletrônica , Tamanho da Partícula , Dinâmica Populacional , Virginia , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA