Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Haematologica ; 108(11): 3086-3094, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259576

RESUMO

Abnormal retention of mitochondria in mature red blood cells (RBC) has been recently reported in sickle cell anemia (SCA) but their functionality and their role in the pathophysiology of SCA remain unknown. The presence of mitochondria within RBC was determined by flow cytometry in 61 SCA patients and ten healthy donors. Patients were classified according to the percentage of mature RBC with mitochondria contained in the whole RBC population: low (0-4%), moderate (>4% and <8%), or high level (>8%). RBC rheological, hematological, senescence and oxidative stress markers were compared between the three groups. RBC senescence and oxidative stress markers were also compared between mature RBC containing mitochondria and those without. The functionality of residual mitochondria in sickle RBC was measured by high-resolution respirometry assay and showed detectable mitochondrial oxygen consumption in sickle mature RBC but not in healthy RBC. Increased levels of mitochondrial reactive oxygen species were observed in mature sickle RBC when incubated with Antimycin A versus without. In addition, mature RBC retaining mitochondria exhibited greater levels of reactive oxygen species compared to RBC without mitochondria, as well as greater Ca2+, lower CD47 and greater phosphatidylserine exposure. Hematocrit and RBC deformability were lower, and the propensity of RBC to sickle under deoxygenation was higher, in the SCA group with a high percentage of mitochondria retention in mature RBC. This study showed the presence of functional mitochondria in mature sickle RBC, which could favor RBC sickling and accelerate RBC senescence, leading to increased cellular fragility and hemolysis.


Assuntos
Anemia Falciforme , Hemólise , Humanos , Espécies Reativas de Oxigênio , Eritrócitos , Estresse Oxidativo , Mitocôndrias
2.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921223

RESUMO

Body mass is known to be a fundamental driver of many biological traits, including metabolism. However, the effect of body mass on mitochondrial energy transduction is still poorly understood and has mainly been described in mammals. Using 13 species of birds ranging from 15 g (finches) to 160 kg (ostrich), we report here that the mitochondrial production of ATP, and the corresponding oxygen consumption, are negatively dependent on body mass in skeletal muscles but not in the heart. Results also showed that mitochondrial efficiency was positively correlated with body mass at sub-maximal phosphorylating states in the skeletal muscle, but not in the heart. This difference between muscle tissues is potentially linked to the difference in energetic demand expandability and the heavy involvement of skeletal muscle in thermoregulation.


Assuntos
Aves , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Aves/fisiologia , Músculo Esquelético/fisiologia , Miocárdio/metabolismo , Mamíferos/metabolismo , Consumo de Oxigênio/fisiologia
3.
J Exp Biol ; 226(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621833

RESUMO

Aquatic ecosystems can exhibit seasonal variation in resource availability and animals have evolved to cope with the associated caloric restriction. During winter in the NW Mediterranean Sea, the European sardine Sardina pilchardus naturally experiences caloric restriction owing to a decrease in the diversity and quantity of plankton. However, ongoing global warming has had deleterious effects on plankton communities such that food shortages may occur throughout the year, especially under warm conditions in the summer. We investigated the interactive effects of temperature and food availability on sardine metabolism by continuously monitoring whole-animal respiration of groups of control (fed) and food-deprived sardines over a 60-day experiment in winter (12°C) or summer (20°C) conditions under natural photoperiod. In addition, we measured mitochondrial respiration of red muscle fibres, biometric variables and energy reserves of individuals sampled at 30 and 60 days. This revealed that winter food deprivation elicits energy saving mechanisms at whole animal and cellular levels by maintaining a low metabolism to preserve energy reserves, allowing high levels of survival. By contrast, despite energy saving mechanisms at the mitochondrial level, whole animal metabolic rate was high during food deprivation in summer, causing increased consumption of energy reserves at the muscular level and high mortality after 60 days. Furthermore, a 5-day re-feeding did not improve survival, and mortalities continued, suggesting that long-term food deprivation at high temperatures causes profound stress in sardines that potentially impairs nutrient absorption.


Assuntos
Ecossistema , Privação de Alimentos , Animais , Temperatura , Peixes/fisiologia , Metabolismo Energético , Estações do Ano
4.
Artigo em Inglês | MEDLINE | ID: mdl-37479023

RESUMO

In eukaryotes, the performances of an organism are dependent on body mass and chemically supported by the mitochondrial production of ATP. Although the relationship between body mass and mitochondrial oxygen consumption is well described, the allometry of the transduction efficiency from oxygen to ATP production (ATP/O) is still poorly understood. Using a comparative approach, we investigated the oxygen consumption and ATP production of liver mitochondria from twelve species of mammals ranging from 5 g to 600 kg. We found that both oxygen consumption and ATP production are mass dependent but not the ATP/O at the maximal phosphorylating state. The results also showed that for sub-maximal phosphorylating states the ATP/O value positively correlated with body mass, irrespective of the metabolic intensity. This result contrasts with previous data obtained in mammalian muscles, suggesting a tissue-dependence of the body mass effect on mitochondrial efficiency.


Assuntos
Mitocôndrias Hepáticas , Fosforilação Oxidativa , Animais , Mitocôndrias Hepáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismo , Consumo de Oxigênio/fisiologia
5.
J Therm Biol ; 117: 103719, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776632

RESUMO

Both birds and mammals have important thermogenic capacities allowing them to maintain high body temperatures, i.e., 37 °C and 40 °C on average in mammals and birds, respectively. However, during periods of high locomotor activity, the energy released during muscular contraction can lead to muscle temperature reaching up to 43-44 °C. Mitochondria are responsible for producing the majority of ATP through cellular respiration and metabolizing different substrates, including carbohydrates and lipids, to generate ATP. A limited number of studies comparing avian and mammalian species showed preferential utilization of specific substrates for mitochondrial energy at different metabolic intensities, but authors always measured at body temperature. The present study evaluated mitochondrial respiration rates and OXPHOS coupling efficiencies at 37 °C, 40 °C and 43 °C associated with pyruvate/malate (carbohydrate metabolism) or palmitoyl-carnitine/malate (lipid metabolism) as substrates in pigeons (Columba livia) and rats (Rattus norvegicus), a well-known pair in scientific literature and for their similar body mass. The data show different hyperthermia-induced responses between the two species with (i) skeletal muscle mitochondria from rats being more sensitive to rising temperatures than in pigeons, and (ii) the two species having different substrate preferences during hyperthermia, with rats oxidizing preferentially carbohydrates and pigeons lipids. By analyzing the interplay between temperature and substrate utilization, we describe a means by which endotherms deal with extreme muscular temperatures to provide enough ATP to support energy demands.

6.
Proc Biol Sci ; 289(1978): 20220719, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35858057

RESUMO

Intra-specific variation in both the basal metabolic rate (BMR) and mitochondrial efficiency (the amount of ATP produced per unit of oxygen consumed) has profound evolutionary and ecological consequences. However, the functional mechanisms responsible for this variation are not fully understood. Mitochondrial efficiency is negatively correlated with BMR at the interspecific level but it is positively correlated with performance capacity at the intra-specific level. This discrepancy is surprising, as theories explaining the evolution of endothermy assume a positive correlation between BMR and performance capacity. Here, we quantified mitochondrial oxidative phosphorylation activity and efficiency in two lines of laboratory mice divergently selected for either high (H-BMR) or low (L-BMR) levels of BMR. H-BMR mice had larger livers and kidneys (organs that are important predictors of BMR). H-BMR mice also showed higher oxidative phosphorylation activity in liver mitochondria but this difference can be hypothesized to be a direct effect of selection only if the heritability of this trait is low. However, mitochondrial efficiency in all studied organs did not differ between the two lines. We conclude that the rapid evolution of BMR can reflect changes in organ size rather than mitochondrial properties, and does not need to be accompanied obligatorily by changes in mitochondrial efficiency.


Assuntos
Metabolismo Basal , Mitocôndrias , Animais , Camundongos , Tamanho do Órgão
7.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34881781

RESUMO

Some hypoxia-tolerant species, such as goldfish, experience intermittent and severe hypoxia in their natural habitat, causing them to develop multiple physiological adaptations. However, in fish, the metabolic impact of regular hypoxic exposure on swimming performance in normoxia is less well understood. Therefore, we experimentally tested whether chronic exposure to constant (30 days at 10% air saturation) or intermittent hypoxia (3 h in normoxia and 21 h in hypoxia, 5 days a week) would result in similar metabolic and swimming performance benefits after reoxygenation. Moreover, half of the normoxic and intermittent hypoxic fish were put on a 20-day normoxic training regime. After these treatments, metabolic rate (standard and maximum metabolic rates: SMR and MMR) and swimming performance [critical swimming speed (Ucrit) and cost of transport (COT)] were assessed. In addition, enzyme activities [citrate synthase (CS), cytochrome c oxidase (COX) and lactate dehydrogenase (LDH)] and mitochondrial respiration were examined in red muscle fibres. We found that acclimation to constant hypoxia resulted in (1) metabolic suppression (-45% SMR and -27% MMR), (2) increased anaerobic capacity (+117% LDH), (3) improved swimming performance (+80% Ucrit, -71% COT) and (4) no changes at the mitochondrial level. Conversely, the enhancement of swimming performance was reduced following acclimation to intermittent hypoxia (+45% Ucrit, -41% COT), with a 55% decrease in aerobic scope, despite a significant increase in oxidative metabolism (+201% COX, +49% CS). This study demonstrates that constant hypoxia leads to the greatest benefit in swimming performance and that mitochondrial metabolic adjustments only provide minor help in coping with hypoxia.


Assuntos
Carpa Dourada , Hipóxia , Aclimatação/fisiologia , Animais , Consumo de Oxigênio/fisiologia , Natação/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34748935

RESUMO

Skeletal muscle mitochondria of the African pygmy mouse Mus mattheyi exhibit markedly reduced oxygen consumption and ATP synthesis rates but a higher mitochondrial efficiency than what would be expected from allometric trends. In the present study, we assessed whether such reduction of mitochondrial activity in M. mattheyi can limit the oxidative stress associated with an increased generation of mitochondrial reactive oxygen species. We conducted a comparative study of mitochondrial oxygen consumption, H2O2 release, and electron leak (%H2O2/O) in skeletal muscle mitochondria isolated from the extremely small African pygmy mouse (M. mattheyi, ~5 g) and Mus musculus, which is a larger Mus species (~25 g). Mitochondria were energized with pyruvate, malate, and succinate, after which fluxes were measured at different steady-state rates of oxidative phosphorylation. Overall, M. mattheyi exhibited lower oxidative activity and higher electron leak than M. musculus, while the H2O2 release did not differ significantly between these two Mus species. We further found that the high coupling efficiency of skeletal muscle mitochondria from M. mattheyi was associated with high electron leak. Nevertheless, data also show that, despite the higher electron leak, the lower mitochondrial respiratory capacity of M. mattheyi limits the cost of a net increase in H2O2 release, which is lower than that expected for a mammals of this size.


Assuntos
Mitocôndrias Musculares/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
9.
Artigo em Inglês | MEDLINE | ID: mdl-36031060

RESUMO

Heat waves are extreme thermal events whose frequency and intensity will increase with global warming. As metabolic responses to temperature are time-dependent, we explored the effects of an exposure to several heat waves on the mitochondrial metabolism of zebrafish Danio rerio. For this purpose, zebrafish were acclimated at 26 °C or 31 °C for 4 weeks and some fish acclimated at 26 °C underwent 2 types of heat waves: 2 periods of 5 days at 31 °C or 10 days at 31 °C. After this acclimation period, mitochondrial respiration of red muscle fibres was measured at 26 °C and 31 °C for each fish, with the phosphorylation (OXPHOS) and basal (LEAK) respirations obtained with activation of complex I, complex II or complexes I and II. The respiratory control ratio (RCR) and the mitochondrial aerobic scope (CAS) were also calculated at both temperatures after the activation of complexes I and II. Under our conditions, heat waves did not result in variations in any mitochondrial parameters, suggesting a high tolerance of zebrafish to environmental temperature fluctuations. However, an acute in vitro warming led to an increase in the LEAK respiration together with a higher temperature effect on complex II than complex I, inducing a decrease of mitochondrial efficiency to produce energy at high temperatures. Increased interindividual variability for some parameters at 26 °C or 31 °C also suggests that each individual has its own ability to cope with temperature fluctuations.


Assuntos
Temperatura Alta , Peixe-Zebra , Aclimatação/fisiologia , Animais , Complexo I de Transporte de Elétrons , Mitocôndrias/fisiologia , Músculos , Temperatura , Peixe-Zebra/fisiologia
10.
J Anim Ecol ; 90(10): 2289-2301, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34013518

RESUMO

Global warming is causing profound modifications of aquatic ecosystems and one major outcome appears to be a decline in adult size of many fish species. Over the last decade, sardine populations in the Gulf of Lions (NW Mediterranean Sea) have shown severe declines in body size and condition as well as disappearance of the oldest individuals, which could not be related to overfishing, predation pressure or epizootic diseases. In this study, we investigated whether this situation reflects a bottom-up phenomenon caused by reduced size and availability of prey that could lead to energetic constraints. We fed captive sardines with food items of two different sizes eliciting a change in feeding mode (filter-feeding on small items and directly capturing larger ones) at two different rations for several months, and then assessed their muscle bioenergetics to test for changes in cellular function. Feeding on smaller items was associated with a decline in body condition, even at high ration, and almost completely inhibited growth by comparison to sardines fed large items at high ration. Sardines fed on small items presented specific mitochondrial adjustments for energy sparing, indicating a major bioenergetic challenge. Moreover, mitochondria from sardines in poor condition had low basal oxidative activity but high efficiency of ATP production. Notably, when body condition was below a threshold value of 1.07, close to the mean observed in the wild, it was directly correlated with basal mitochondrial activity in muscle. The results show a link between whole-animal condition and cellular bioenergetics in the sardine, and reveal physiological consequences of a shift in feeding mode. They demonstrate that filter-feeding on small prey leads to poor growth, even under abundant food and an increase in the efficiency of ATP production. These findings may partially explain the declines in sardine size and condition observed in the wild.


Le changement global entraîne de profondes modifications des écosystèmes aquatiques, l'une des principales étant le déclin de la taille des adultes chez de nombreuses espèces de poissons. Au cours de la dernière décennie, les populations de sardines du Golfe du Lion (Nord-Ouest de la Méditerranée) ont montré une importante diminution de leur taille et de leur condition corporelle ainsi qu'une disparition des individus les plus âgés, qui n'ont pas pu être liées à la surpêche, à la pression de prédation ou aux épizooties. Dans cette étude, nous avons cherché à savoir si cette situation reflète un phénomène ascendant causé par la réduction de la taille et de la disponibilité des proies qui pourrait entraîner des contraintes énergétiques chez la sardine. Nous avons ainsi nourri des sardines captives avec des granulés de deux tailles différentes provoquant un changement de mode d'alimentation (filtration des petits granulés et capture directe des plus gros) et à deux rations différentes pendant plusieurs mois, puis nous avons évalué leur bioénergétique musculaire pour tester les changements au niveau de leur fonction cellulaire. L'alimentation à base de petits granulés a été associée à un déclin de la condition corporelle, même à une ration élevée, et à une croissance quasiment inhibée par rapport aux sardines nourries avec des plus gros granulés à une ration élevée. Les sardines nourries avec des petits granulés ont également présenté des ajustements mitochondriaux spécifiques pour économiser de l'énergie, indiquant un défi bioénergétique majeur. De plus, les mitochondries des sardines en mauvaise condition présentaient une faible activité oxydative basale, mais une efficacité élevée de production d'ATP. Notamment, lorsque la condition corporelle était inférieure à une valeur seuil de 1,07, proche de la moyenne observée dans la nature, elle était directement corrélée à l'activité mitochondriale basale dans le muscle. Ces résultats montrent un lien entre la condition de l'animal entier et la bioénergétique cellulaire chez la sardine, et révèlent les conséquences physiologiques d'un changement de mode d'alimentation. Ils démontrent que le nourrissage via la filtration de petites proies entraîne une faible croissance, même en cas de nourriture abondante, et une augmentation de l'efficacité de la production d'ATP. Ces résultats peuvent expliquer en partie le déclin de la taille et de la condition des sardines observé dans la nature.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Metabolismo Energético , Pesqueiros , Peixes
11.
Biol Lett ; 17(2): 20200759, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33563134

RESUMO

Aerobic metabolism of aquatic ectotherms is highly sensitive to fluctuating climates. Many mitochondrial traits exhibit phenotypic plasticity in response to acute variations in temperature and oxygen availability. These responses are critical for understanding the effects of environmental variations on aquatic ectotherms' performance. Using the European seabass, Dicentrarchus labrax, we determined the effects of acute warming and deoxygenation in vitro on mitochondrial respiratory capacities and mitochondrial efficiency to produce ATP (ATP/O ratio). We show that acute warming reduced ATP/O ratio but deoxygenation marginally raised ATP/O ratio, leading to a compensatory effect of low oxygen availability on mitochondrial ATP/O ratio at high temperature. The acute effect of warming and deoxygenation on mitochondrial efficiency might be related to the leak of protons across the mitochondrial inner membrane, as the mitochondrial respiration required to counteract the proton leak increased with warming and decreased with deoxygenation. Our study underlines the importance of integrating the combined effects of temperature and oxygen availability on mitochondrial metabolism. Predictions on decline in performance of aquatic ectotherms owing to climate change may not be accurate, since these predictions typically look at respiratory capacity and ignore efficiency of ATP production.


Assuntos
Bass , Oxigênio , Animais , Mitocôndrias , Consumo de Oxigênio , Temperatura
12.
Kidney Int ; 98(3): 663-672, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32739210

RESUMO

Protein energy wasting is a common feature of patients with chronic kidney disease (CKD) and is associated with poor outcomes. Protein energy wasting and cachexia, a severe form of protein energy wasting, are characterized by increased resting energy expenditure but the underlying mechanisms are unclear. Browning corresponds to the activation of inducible brown adipocytes in white adipose tissue and occurs in states of cachexia associated with hypermetabolic disease such as cancer. Here we tested the hypothesis that CKD-associated protein energy wasting could result from browning activation as a direct effect of the uremic environment on adipocytes. In a murine model of CKD (5/6 nephrectomy), there was increased resting energy expenditure, expression of uncoupling protein 1 (a thermogenic protein uncoupling oxidative phosphorylation in mitochondria) and citrate synthase activity (a proxy of mitochondrial density in white adipose tissue). Mice with CKD also exhibited increased levels of atrial natriuretic peptide, a well known activator of browning. The incubation of primary adipose cells with plasma from patients receiving dialysis treatment and having signs of protein energy wasting led to an increased synthesis of uncoupling protein 1. Similarly, primary adipose cells exposed to atrial natriuretic peptide at concentrations relevant of CKD led to a significant increase of uncoupling protein 1 content. Thus, accumulation of cardiac natriuretic peptides during CKD could contribute to the browning of white adipose tissue and protein energy wasting.


Assuntos
Caquexia , Insuficiência Renal Crônica , Tecido Adiposo Branco/metabolismo , Animais , Caquexia/metabolismo , Metabolismo Energético , Humanos , Camundongos , Peptídeos Natriuréticos/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Exp Physiol ; 105(6): 1025-1034, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196792

RESUMO

NEW FINDINGS: What is the central question of this study? Does progesterone reduce the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory control and oxidative stress in the central nervous system in ovariectomized rats? What is the main finding and its importance? Progesterone does not prevent the elevation of arterial blood pressure in rats exposed to CIH, but normalizes respiratory control, and reduces cerebral oxidative stress. This study draws focus to a potential role of progesterone and the consequences of sleep apnoea in menopausal women. ABSTRACT: We tested the hypothesis that progesterone (Prog) reduces the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory chemoreflexes and oxidative stress in the central nervous system. Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh) or Prog (4 mg kg-1  day-1 ). Two weeks following the surgery, rats were exposed to room air (Air) or CIH (7 days, 10% O2 , 10 cycles h-1 , 8 h day-1 ). We studied three groups: Veh-Air, Veh-CIH and Prog-CIH. After the CIH exposures, we measured the mean arterial pressure (MAP; tail cuff) and assessed the frequency of apnoeas at rest and ventilatory responses to hypoxia and hypercapnia (whole body plethysmography). The activities of the pro-oxidant enzyme NADPH oxidase (NOX) and antioxidant enzymes superoxide dismutase (SOD; in mitochondrial and cytosolic fractions) and glutathione peroxidase (GPx), as well as the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, were measured in brain cortex and brainstem samples. CIH exposure increased the MAP, the frequency of apnoeas, and the respiratory frequency response to hypoxia and hypercapnia. Prog did not prevent the CIH-induced elevation in MAP, but it reduced the CIH-induced frequency of apnoeas and increased hypoxic and hypercapnic ventilatory responses. In the brain cortex, CIH increased NOX activity, and decreased the cytosolic and mitochondrial SOD activities. These effects were prevented by Prog. NOX activity was increased by CIH in the brainstem, and this was also blocked by Prog. The study draws focus to the links between ovarian hormones and the consequences of sleep apnoea in women.


Assuntos
Hipóxia/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Progesterona/farmacologia , Síndromes da Apneia do Sono/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Pressão Arterial , Encéfalo/metabolismo , Feminino , Ovariectomia , Pletismografia Total , Ratos , Ratos Sprague-Dawley
14.
J Exp Biol ; 223(Pt 21)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32968000

RESUMO

At fledging, king penguin juveniles undergo a major energetic challenge to overcome the intense and prolonged energy demands for thermoregulation and locomotion imposed by life in cold seas. Among other responses, sea acclimatization triggers fuel selection in skeletal muscle metabolism towards lipid oxidation in vitro, which is reflected by a drastic increase in lipid-induced thermogenesis in vivo However, the exact nature of skeletal muscle thermogenic mechanisms (shivering and/or non-shivering thermogenesis) remains undefined. The aim of the present study was to determine in vivo whether the capacity for non-shivering thermogenesis was enhanced by sea acclimatization. We measured body temperature, metabolic rate, heart rate and shivering activity in fully immersed king penguins (Aptenodytes patagonicus) exposed to water temperatures ranging from 12 to 29°C. Results from terrestrial pre-fledging juveniles were compared with those from sea-acclimatized immature penguins (hereafter 'immatures'). The capacity for thermogenesis in water was as effective in juveniles as in immatures, while the capacity for non-shivering thermogenesis was not reinforced by sea acclimatization. This result suggests that king penguins mainly rely on skeletal muscle contraction (shivering or locomotor activity) to maintain endothermy at sea. Sea-acclimatized immature penguins also exhibited higher shivering efficiency and oxygen pulse (amount of oxygen consumed or energy expended per heartbeat) than pre-fledging juvenile birds. Such increase in shivering and cardiovascular efficiency may favor a more efficient activity-thermoregulatory heat substitution providing penguins with the aptitude to survive the tremendous energetic challenge imposed by marine life in cold circumpolar oceans.


Assuntos
Spheniscidae , Aclimatação , Animais , Regulação da Temperatura Corporal , Temperatura Baixa , Metabolismo Energético , Músculo Esquelético/metabolismo , Estremecimento , Termogênese
15.
J Exp Biol ; 223(Pt 21)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32967994

RESUMO

At fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more 'thermogenic' to sustain heat production or more 'economical' to conserve oxygen in sea-acclimatized immature penguins (hereafter 'immatures') compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30-45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.


Assuntos
Spheniscidae , Animais , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo
16.
J Exp Biol ; 223(Pt 5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041806

RESUMO

Mass-specific metabolic rate negatively co-varies with body mass from the whole-animal to the mitochondrial levels. Mitochondria are the mainly consumers of oxygen inspired by mammals to generate ATP or compensate for energetic losses dissipated as the form of heat (proton leak) during oxidative phosphorylation. Consequently, ATP synthesis and proton leak compete for the same electrochemical gradient. Because proton leak co-varies negatively with body mass, it is unknown whether extremely small mammals further decouple their mitochondria to maintain their body temperature or whether they implement metabolic innovations to ensure cellular homeostasis. The present study investigated the impact of body mass variation on cellular and mitochondrial functioning in small mammals, comparing two extremely small African pygmy mice (Mus mattheyi, ∼5 g, and Mus minutoides, ∼7 g) with the larger house mouse (Mus musculus, ∼22 g). Oxygen consumption rates were measured from the animal to the mitochondrial levels. We also measured mitochondrial ATP synthesis in order to appreciate the mitochondrial efficiency (ATP/O). At the whole-animal scale, mass- and surface-specific metabolic rates co-varied negatively with body mass, whereas this was not necessarily the case at the cellular and mitochondrial levels. Mus mattheyi had generally the lowest cellular and mitochondrial fluxes, depending on the tissue considered (liver or skeletal muscle), as well as having more-efficient muscle mitochondria than the other two species. Mus mattheyi presents metabolic innovations to ensure its homeostasis, by generating more ATP per oxygen consumed.


Assuntos
Peso Corporal , Camundongos/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Metabolismo Basal , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo
17.
J Exp Biol ; 222(Pt 4)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30679239

RESUMO

Under nutritional deprivation, the energetic benefits of reducing mitochondrial metabolism are often associated with enhanced harmful pro-oxidant effects and a subsequent long-term negative impact on cellular integrity. However, the flexibility of mitochondrial functioning under stress has rarely been explored during the transition from basal non-phosphorylating to maximal phosphorylating oxygen consumption. Here, we experimentally tested whether ducklings (Cairina moschata), fasted for 6 days and subsequently refed for 3 days, exhibited modifications to their mitochondrial fluxes, i.e. oxygen consumption, ATP synthesis, reactive oxygen species generation (ROS) and associated ratios, such as the electron leak (% ROS/O) and the oxidative cost of ATP production (% ROS/ATP). This was carried out at different steady-state rates of oxidative phosphorylation in both pectoralis (glycolytic) and gastrocnemius (oxidative) muscles. Fasting induced a decrease in the rates of oxidative phosphorylation and maximal ROS release. These changes were completely reversed by 3 days of refeeding. Yet, the fundamental finding of the present study was the existence of a clear threshold in ROS release and associated ratios, which remained low until a low level of mitochondrial activity was reached (30-40% of maximal oxidative phosphorylation activity).


Assuntos
Patos/fisiologia , Jejum/fisiologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenótipo , Distribuição Aleatória
18.
Artigo em Inglês | MEDLINE | ID: mdl-31220620

RESUMO

We investigated links between swimming behavior and muscle bioenergetics in two emblematic Mediterranean fish species that have very different ecologies and activity levels. European sardines Sardina pilchardus are pelagic, they swim aerobically, school constantly and have high muscle fat content. Gilthead seabream Sparus aurata are bentho-pelagic, they show discontinuous spontaneous swimming patterns and store less fat in their muscle. Estimating the proportion of red and white muscle phenotypes, sardine exhibited a larger proportion of red muscle (~10% of the body mass) compared to gilthead seabream (~5% of the body mass). We firstly studied red and white muscle fiber bioenergetics, using high-resolution respirometers, showing a 4-fold higher oxidation capacity for red compared to white muscle. Secondly, we aimed to compare the red muscle ability to oxidize either lipids or carbohydrates. Sardine red muscle had a 3-fold higher oxidative capacity than gilthead seabream and a greater capacity to oxidize lipids. This study provides novel insights into physiological mechanisms underlying the different lifestyles of these highly-prized species.


Assuntos
Metabolismo Energético , Músculo Esquelético/metabolismo , Dourada/metabolismo , Animais , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Mar Mediterrâneo , Músculo Esquelético/fisiologia , Dourada/fisiologia , Natação/fisiologia
19.
J Hepatol ; 69(5): 1074-1087, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30193922

RESUMO

BACKGROUND & AIMS: Glycogen storage disease type Ia (GSDIa) is a rare genetic disease associated with glycogen accumulation in hepatocytes and steatosis. With age, most adult patients with GSDIa develop hepatocellular adenomas (HCA), which can progress to hepatocellular carcinomas (HCC). In this study, we characterized metabolic reprogramming and cellular defense alterations during tumorigenesis in the liver of hepatocyte-specific G6pc deficient (L.G6pc-/-) mice, which develop all the hepatic hallmarks of GSDIa. METHODS: Liver metabolism and cellular defenses were assessed at pretumoral (four months) and tumoral (nine months) stages in L.G6pc-/- mice fed a high fat/high sucrose (HF/HS) diet. RESULTS: In response to HF/HS diet, hepatocarcinogenesis was highly accelerated since 85% of L.G6pc-/- mice developed multiple hepatic tumors after nine months, with 70% classified as HCA and 30% as HCC. Tumor development was associated with high expression of malignancy markers of HCC, i.e. alpha-fetoprotein, glypican 3 and ß-catenin. In addition, L.G6pc-/- livers exhibited loss of tumor suppressors. Interestingly, L.G6pc-/- steatosis exhibited a low-inflammatory state and was less pronounced than in wild-type livers. This was associated with an absence of epithelial-mesenchymal transition and fibrosis, while HCA/HCC showed a partial epithelial-mesenchymal transition in the absence of TGF-ß1 increase. In HCA/HCC, glycolysis was characterized by a marked expression of PK-M2, decreased mitochondrial OXPHOS and a decrease of pyruvate entry in the mitochondria, confirming a "Warburg-like" phenotype. These metabolic alterations led to a decrease in antioxidant defenses and autophagy and chronic endoplasmic reticulum stress in L.G6pc-/- livers and tumors. Interestingly, autophagy was reactivated in HCA/HCC. CONCLUSION: The metabolic remodeling in L.G6pc-/- liver generates a preneoplastic status and leads to a loss of cellular defenses and tumor suppressors that facilitates tumor development in GSDI. LAY SUMMARY: Glycogen storage disease type Ia (GSD1a) is a rare metabolic disease characterized by hypoglycemia, steatosis, excessive glycogen accumulation and tumor development in the liver. In this study, we have observed that GSDIa livers reprogram their metabolism in a similar way to cancer cells, which facilitates tumor formation and progression, in the absence of hepatic fibrosis. Moreover, hepatic burden due to overload of glycogen and lipids in the cells leads to a decrease in cellular defenses, such as autophagy, which could further promote tumorigenesis in the case of GSDI.


Assuntos
Carcinoma Hepatocelular/etiologia , Doença de Depósito de Glicogênio Tipo I/complicações , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Animais , Autofagia , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Transição Epitelial-Mesenquimal , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sacarose/administração & dosagem
20.
J Exp Biol ; 221(Pt 4)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29361595

RESUMO

During food deprivation, animals must develop physiological responses to maximize energy conservation and survival. At the subcellular level, energy conservation is mainly achieved by a reduction in mitochondrial activity and an upregulation of oxidative phosphorylation efficiency. The aim of this study was to decipher mechanisms underlying the increased mitochondrial coupling efficiency reported in fasted birds. Mitochondrial oxidative phosphorylation activity, efficiency and membrane potential were measured in mitochondria isolated from the gastrocnemius muscle of ducklings. The content and activities of respiratory chain complexes were also determined. Results from ducklings fasted for 6 days were compared with ducklings fed ad libitum Here, we report that 6 days of fasting improved coupling efficiency in muscle mitochondria of ducklings by depressing proton-motive force through the downregulation of substrate oxidation reactions. Fasting did not change the basal proton conductance of mitochondria but largely decreased the oxidative phosphorylation activity, which was associated with decreased activities of succinate-cytochrome c reductase (complexes II-III) and citrate synthase, and altered contents in cytochromes b and c+c1 In contrast, fasting did not change cytochrome aa3 content or the activity of complexes I, II and IV. Altogether, these data show that the lower capacity of the respiratory machinery to pump protons in ducklings fasted for 6 days generates a lower membrane potential, which triggers a decreased proton leak activity and thus a higher coupling efficiency. We propose that the main site of action would be located at the level of co-enzyme Q pool/complex III of the electron transport chain.


Assuntos
Patos/fisiologia , Privação de Alimentos/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Fosforilação Oxidativa , Animais , Regulação para Baixo , Masculino , Distribuição Aleatória , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA