Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(49)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39284322

RESUMO

The methodology of statistical analysis of cathodoluminescence (CL) intensity mappings on ensembles of several hundreds of InGaN/GaN nanowires (NWs) used to quantify non-radiative recombination centres (NRCs) was validated on InGaN/GaN NWs exhibiting spatially homogeneous cathodoluminescence at the scale of single NWs. Cathodoluminescence intensity variations obeying Poisson's statistics were assigned to the presence of randomly incorporated point defects acting as NRCs. Additionally, another type of NRCs, namely extended defects leading to spatially inhomogeneous cathodoluminescence intensity at the scale of single InGaN/GaN NWs are revealed by high resolution scanning transmission electron microscopy, geometrical phase analysis and two-beam diffraction conditions techniques. Such defects are responsible for deviations from Poisson's statistics, allowing one to achieve a rapid evaluation of the crystallographic and optical properties of several hundreds of NWs in a single cathodoluminescence intensity mapping experiment.

2.
Nanotechnology ; 34(49)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37640021

RESUMO

In order to elucidate the mechanisms responsible for cathodoluminescence intensity variations at the scale of single InGaN/GaN nanowire heterostructures, a methodology is proposed based on a statistical analysis on ensembles of several hundreds of nanowires exhibiting a diameter of 180, 240 and 280 nm. For 180 nm diameter, we find that intensitiy variations are consistent with incorporation of point defects obeying Poisson's statistics. For wider diameters, intensity variations at the scale of single NWs are observed and assigned to local growth conditions fluctuations. Finally, for the less luminescent nanowires, a departure from Poisson's statistics is observed suggesting the possible clustering of non independent point defects.

3.
Nanotechnology ; 34(27)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37023726

RESUMO

Molecular beam epitaxy growth and optical properties of GaN quantum disks in AlN nanowires were investigated, with the purpose of controlling the emission wavelength of AlN nanowire-based light emitting diodes. Besides GaN quantum disks with a thickness ranging from 1 to 4 monolayers, a special attention was paid to incomplete GaN disks exhibiting lateral confinement. Their emission consists of sharp lines which extend down to 215 nm, in the vicinity of AlN band edge. The room temperature cathodoluminescence intensity of an ensemble of GaN quantum disks embedded in AlN nanowires is about 20% of the low temperature value, emphasizing the potential of ultrathin/incomplete GaN quantum disks for deep UV emission.

4.
Nano Lett ; 22(23): 9544-9550, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36442685

RESUMO

A key issue in the development of high-performance semiconductor devices is the ability to properly measure active dopants at the nanometer scale. In a p-n junction, the abruptness of the dopant profile around the metallurgical junction directly influences the electric field. Here, a contacted nominally symmetric and highly doped (NA = ND = 9 × 1018 cm-3) silicon p-n specimen is studied through in situ biased four-dimensional scanning transmission electron microscopy (4D-STEM). Measurements of electric field, built-in voltage, depletion region width, and charge density are combined with analytical equations and finite-element simulations in order to evaluate the quality of the junction interface. It is shown that all the junction parameters measured are compatible with a linearly graded junction. This hypothesis is also consistent with the evolution of the electric field with bias as well as off-axis electron holography data. These results demonstrate that in situ biased 4D-STEM can allow a better understanding of the electrostatics of semiconductor p-n junctions with nm-scale resolution.

5.
Nanotechnology ; 32(2): 025601, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32906087

RESUMO

The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11-20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and zinc blende (ZB) (cubic) crystallographic phases was found in the GaN layers with ratios highly dependent on the growth conditions. Interestingly, almost pure ZB GaN epitaxial layers could be obtained at high growth temperature, suggesting the existence of a specific GaN nucleation mechanism on mica and opening a new way to the growth of the thermodynamically less stable ZB GaN phase.

6.
Nanotechnology ; 32(8): 085606, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33147580

RESUMO

The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN nanotubes.

7.
Nano Lett ; 19(12): 8365-8371, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613639

RESUMO

A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu-Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal-semiconductor phase formation.

8.
Nano Lett ; 19(5): 2897-2904, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30908919

RESUMO

To fully exploit the potential of semiconducting nanowires for devices, high quality electrical contacts are of paramount importance. This work presents a detailed in situ transmission electron microscopy (TEM) study of a very promising type of NW contact where aluminum metal enters the germanium semiconducting nanowire to form an extremely abrupt and clean axial metal-semiconductor interface. We study this solid-state reaction between the aluminum contact and germanium nanowire in situ in the TEM using two different local heating methods. Following the reaction interface of the intrusion of Al in the Ge nanowire shows that at temperatures between 250 and 330 °C the position of the interface as a function of time is well fitted by a square root function, indicating that the reaction rate is limited by a diffusion process. Combining both chemical analysis and electron diffraction we find that the Ge of the nanowire core is completely exchanged by the entering Al atoms that form a monocrystalline nanowire with the usual face-centered cubic structure of Al, where the nanowire dimensions are inherited from the initial Ge nanowire. Model-based chemical mapping by energy dispersive X-ray spectroscopy (EDX) characterization reveals the three-dimensional chemical cross-section of the transformed nanowire with an Al core, surrounded by a thin pure Ge (∼2 nm), Al2O3 (∼3 nm), and Ge containing Al2O3 (∼1 nm) layer, respectively. The presence of Ge containing shells around the Al core indicates that Ge diffuses back into the metal reservoir by surface diffusion, which was confirmed by the detection of Ge atoms in the Al metal line by EDX analysis. Fitting a diffusion equation to the kinetic data allows the extraction of the diffusion coefficient at two different temperatures, which shows a good agreement with diffusion coefficients from literature for self-diffusion of Al.

9.
Nanotechnology ; 27(45): 455603, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727147

RESUMO

It is demonstrated that growing InGaN nanowires in metal-rich conditions on top of GaN nanowires results in a widening of the InGaN section. It is shown that the widening is eased by stacking faults (SFs) formation, revealing facets favorable to In incorporation. It is furthermore put in evidence that partial dislocations terminating SFs efficiently contribute to elastic strain relaxation. Indium accumulation on top of the InGaN section is found to result in an axial growth rate decrease, which has been assigned to increased N-N recombination and subsequent effective nitrogen flux decrease, eventually leading to the formation of InGaN nano-umbrellas/nanoplatelets.

10.
Nanotechnology ; 27(19): 195704, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27041669

RESUMO

The structural and optical properties of axial GaN/InGaN/GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nano-cathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 °C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.

11.
Nano Lett ; 15(8): 5289-94, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26218789

RESUMO

Precession electron diffraction has been used to provide accurate deformation maps of a device structure showing that this technique can provide a spatial resolution of better than 2 nm and a precision of better than 0.02%. The deformation maps have been fitted to simulations that account for thin specimen relaxation. By combining the experimental deformation maps and simulations, we have been able to separate the effects of the stressor and recessed sources and drains and show that the Si3N4 stressor increases the in-plane deformation in the silicon channel from 0.92 to 1.52 ± 0.02%. In addition, the stress in the deposited Si3N4 film has been calculated from the simulations, which is an important parameter for device design.

12.
ACS Nano ; 18(18): 11886-11897, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651233

RESUMO

We study the origin of bimodal emission in AlGaN/AlN QD superlattices displaying a high internal quantum efficiency (around 50%) in the 230-300 nm spectral range. The secondary emission at longer wavelengths is linked to the presence of cone-like domains with deformed QD layers, which originate at the first AlN buffer/superlattice interface and propagate vertically. The cones originate at a 30°-faceted shallow pit in the AlN, which appears to be associated with a threading dislocation that produces strong shear strain. The cone-like structures present Ga enrichment at the boundaring facets and larger QDs within the conic domain. The bimodality of the luminescence is attributed to the differing dot size and composition within the cones and at the faceted boundaries, which is confirmed by the correlation of microscopy results and Schrödinger-Poisson calculations.

13.
ACS Nano ; 18(34): 23354-23364, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39145421

RESUMO

There has been extensive activity exploring the doping of semiconducting two-dimensional (2D) transition metal dichalcogenides in order to tune their electronic and magnetic properties. The outcome of doping depends on various factors, including the intrinsic properties of the host material, the nature of the dopants used, their spatial distribution, as well as their interactions with other types of defects. A thorough atomic-level analysis is essential to fully understand these mechanisms. In this work, the vanadium-doped WSe2 monolayer grown by molecular beam epitaxy is investigated using four-dimensional scanning transmission electron microscopy (4D-STEM). Through center-of-mass-based reconstruction, atomic-scale maps are produced, allowing the visualization of both the electric field and the electrostatic potential around individual V atoms. To provide quantitative insights, these results are successfully compared to multislice image simulations based on ab initio calculations, accounting for lens aberrations. Finally, a negative charge around the V dopants is detected as a drop in the electrostatic potential, unambiguously demonstrating that 4D-STEM can be used to detect and to accurately analyze single-dopant charge states in semiconducting 2D materials.

14.
Nano Lett ; 11(11): 4585-90, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21972919

RESUMO

In order to improve the performance of today's nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.


Assuntos
Análise de Falha de Equipamento/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/métodos , Radiometria/métodos , Semicondutores , Campos Eletromagnéticos
15.
Front Chem ; 10: 1058620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605121

RESUMO

In-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage. Here, using CsPbBr3 perovskite nanocrystals as an example, strategies to preserve the native structure of radiation-sensitive nanocrystals in high-resolution electron microscopy studies are presented. Atomic-resolution images obtained using graphene support films allow for a clear comparison with simulation results, showing that most CsPbBr3 nanocrystals are orthorhombic. Low-dose TEM reveals faceted nanocrystals with no in situ formed Pb crystallites, a feature observed in previous TEM studies that has been attributed to radiation damage. Cryo-electron microscopy further delays observable effects of radiation damage. Powder electron diffraction with a hybrid pixel direct electron detector confirms the domination of orthorhombic crystals. These results emphasize the importance of optimizing TEM grid preparation and of exploiting data collection strategies that impart minimum electron dose for revealing the true structure of radiation-sensitive nanocrystals.

16.
Nano Lett ; 9(11): 3837-43, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19780569

RESUMO

We demonstrate that state-of-the-art off-axis electron holography can be used to map active dopants in silicon nanowires as thin as 60 nm with 10 nm spatial resolution. Experiment and simulation demonstrate that doping concentrations of 10(19) and 10(20) cm(-3) can be measured with a detection threshold of 10(18) cm(-3) with respect to intrinsic silicon. Comparison of experimental data and simulations allows an estimation of the charge density at the wire-oxide interface of -1 x 10(12) electron charges cm(-2). Off-axis electron holography thus offers unique capabilities for a detailed analysis of active dopant concentrations in nanostructures.

17.
Ultramicroscopy ; 198: 58-72, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660032

RESUMO

To provide a direct comparison, off-axis holography and differential phase contrast have been performed using the same microscope on the same specimens for the measurement of active dopants and piezoelectric fields. The sensitivity and spatial resolution of the two techniques have been assessed through the study of a simple silicon p-n junction observed at different bias voltages applied in-situ. For an evaluation of limitations and artefacts of the methods in more complicated systems a silicon pMOS device and an InGaN/GaN superlattice with 2.2-nm In0.15Ga0.85N quantum wells is investigated. We demonstrate the effects of dynamical scattering on the electric field measurements in the presence of local strain-induced sample tilts and its dependence on parameters like the convergence angle.

18.
Ultramicroscopy ; 108(5): 488-93, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17888576

RESUMO

GaAs specimens containing p-n junctions have been prepared using focused ion beam (FIB) milling for examination using off-axis electron holography. By lowering the FIB operating voltage from 30 to 8 kV, we have shown a systematic reduction of the electrically 'inactive' thickness from 220 to 100 nm, resulting in a significant increase in the step in phase measured across the junctions as well as an improvement in the signal-to-noise ratio. We also show that the step in phase measured across the junctions can be influenced by the intensity of the electron beam.

19.
IUCrJ ; 5(Pt 1): 67-72, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354272

RESUMO

Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.

20.
J Phys Chem Lett ; 9(10): 2523-2531, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688019

RESUMO

In crystal growth, surfactants are additive molecules used in dilute amount or as dense, permeable layers to control surface morphologies. We investigate the properties of a strikingly different surfactant: a 2D and covalent layer with close atomic packing, graphene. Using in situ, real-time electron microscopy, scanning tunneling microscopy, kinetic Monte Carlo simulations, and continuum mechanics calculations, we reveal why metallic atomic layers can grow in a 2D manner below an impermeable graphene membrane. Upon metal growth, graphene dynamically opens nanochannels called wrinkles, facilitating mass transport while at the same time storing and releasing elastic energy via lattice distortions. Graphene thus behaves as a mechanically active, deformable surfactant. The wrinkle-driven mass transport of the metallic layer intercalated between graphene and the substrate is observed for two graphene-based systems, characterized by different physicochemical interactions, between graphene and the substrate and between the intercalated material and graphene. The deformable surfactant character of graphene that we unveil should then apply to a broad variety of species, opening new avenues for using graphene as a 2D surfactant forcing the growth of flat films, nanostructures, and unconventional crystalline phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA