Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058365

RESUMO

NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the ß-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the ß-subunit from solution.


Assuntos
Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Triptofano Sintase/química , Cristalografia por Raios X/métodos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Multimerização Proteica
2.
Biomacromolecules ; 25(3): 1759-1774, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343096

RESUMO

Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, ß-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.


Assuntos
Fibroínas , Aranhas , Animais , Seda/genética , Seda/química , Proteínas Recombinantes/genética , Fibroínas/genética , Fibroínas/química , Espectroscopia de Ressonância Magnética , Solventes
3.
Nucleic Acids Res ; 48(15): 8796-8807, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32652019

RESUMO

5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure-as witnessed from the ∼2°C decrease in the melting temperature and 5-10 kJ mol-1 decrease in ΔG°-and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van't Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.


Assuntos
Citosina/análogos & derivados , DNA/efeitos dos fármacos , Conformação Molecular/efeitos dos fármacos , Termodinâmica , Pareamento de Bases/genética , Ilhas de CpG/genética , Citosina/química , Citosina/farmacologia , DNA/química , DNA/genética , DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/genética , Cinética , Espectroscopia de Ressonância Magnética , Temperatura de Transição
4.
Angew Chem Int Ed Engl ; 61(45): e202211945, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36063071

RESUMO

The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation.


Assuntos
Nucleosídeos , RNA , Nucleosídeos/química , RNA/química , Isoxazóis , Citidina/química , Ureia/química
5.
J Am Chem Soc ; 142(28): 12146-12156, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564604

RESUMO

Covalent organic frameworks (COFs) display a unique combination of chemical tunability, structural diversity, high porosity, nanoscale regularity, and thermal stability. Recent efforts are directed at using such frameworks as tunable scaffolds for chemical reactions. In particular, COFs have emerged as viable platforms for mimicking natural photosynthesis. However, there is an indisputable need for efficient, stable, and economical alternatives for the traditional platinum-based cocatalysts for light-driven hydrogen evolution. Here, we present azide-functionalized chloro(pyridine)cobaloxime hydrogen-evolution cocatalysts immobilized on a hydrazone-based COF-42 backbone that show improved and prolonged photocatalytic activity with respect to equivalent physisorbed systems. Advanced solid-state NMR and quantum-chemical methods allow us to elucidate details of the improved photoreactivity and the structural composition of the involved active site. We found that a genuine interaction between the COF backbone and the cobaloxime facilitates recoordination of the cocatalyst during the photoreaction, thereby improving the reactivity and hindering degradation of the catalyst. The excellent stability and prolonged reactivity make the herein reported cobaloxime-tethered COF materials promising hydrogen evolution catalysts for future solar fuel technologies.

6.
Solid State Nucl Magn Reson ; 108: 101665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574905

RESUMO

This review describes two rotating-frame (R1ρ) relaxation dispersion methods, namely the Bloch-McConnell Relaxation Dispersion and the Near-rotary Resonance Relaxation Dispersion, which enable the study of microsecond time-scale conformational fluctuations in the solid state using magic-angle-spinning nuclear magnetic resonance spectroscopy. The goal is to provide the reader with key ideas, experimental descriptions, and practical considerations associated with R1ρ measurements that are needed for analyzing relaxation dispersion and quantifying conformational exchange. While the focus is on protein motion, many presented concepts can be equally well adapted to study the microsecond time-scale dynamics of other bio- (e.g. lipids, polysaccharides, nucleic acids), organic (e.g. pharmaceutical compounds), or inorganic molecules (e.g., metal organic frameworks). This article summarizes the essential contributions made by recent theoretical and experimental solid-state NMR studies to our understanding of protein motion. Here we discuss recent advances in fast MAS applications that enable the observation and atomic level characterization of sparsely populated conformational states which are otherwise inaccessible for other experimental methods. Such high-energy states are often associated with protein functions such as molecular recognition, ligand binding, or enzymatic catalysis, as well as with disease-related properties such as misfolding and amyloid formation.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Conformação Proteica , Dobramento de Proteína
7.
J Am Chem Soc ; 141(2): 858-869, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30620186

RESUMO

NMR relaxation dispersion methods provide a holistic way to observe microsecond time-scale protein backbone motion both in solution and in the solid state. Different nuclei (1H and 15N) and different relaxation dispersion techniques (Bloch-McConnell and near-rotary-resonance) give complementary information about the amplitudes and time scales of the conformational dynamics and provide comprehensive insights into the mechanistic details of the structural rearrangements. In this paper, we exemplify the benefits of the combination of various solution- and solid-state relaxation dispersion methods on a microcrystalline protein (α-spectrin SH3 domain), for which we are able to identify and model the functionally relevant conformational rearrangements around the ligand recognition loop occurring on multiple microsecond time scales. The observed loop motions suggest that the SH3 domain exists in a binding-competent conformation in dynamic equilibrium with a sterically impaired ground-state conformation both in solution and in crystalline form. This inherent plasticity between the interconverting macrostates is compatible with a conformational-preselection model and provides new insights into the recognition mechanisms of SH3 domains.


Assuntos
Espectrina/química , Sequência de Aminoácidos , Animais , Galinhas , Hidrogênio , Movimento (Física) , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Fatores de Tempo , Domínios de Homologia de src
8.
J Am Chem Soc ; 141(49): 19276-19288, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31647225

RESUMO

Protein-water interactions have widespread effects on protein structure and dynamics. As such, the function of many biomacromolecules can be directly related to the presence and exchange of water molecules. While the presence of structural water sites can be easily detected by X-ray crystallography, the dynamics within functional water-protein network architectures is largely elusive. Here we use solid-state NMR relaxation dispersion measurements with a focus on those active-site residues in the enzyme human carbonic anhydrase II (hCAII) that constitute the evolutionarily conserved water pocket, key for CAs' enzymatic catalysis. Together with chemical shifts, peak broadening, and results of molecular dynamics (MD) and DFT shift calculations, the relaxation dispersion data suggest the presence of a widespread fast µs-time-scale dynamics in the pocket throughout the protein-water network. This process is abrogated in the presence of an inhibitor which partially disrupts the network. The time scale of the protein-water pocket motion coincides both with the estimated residence time of Zn-bound water/OH- in the pocket showing the longest lifetimes in earlier magnetic relaxation dispersion experiments as well as with the rate-limiting step of catalytic turnover. As such, the reorganization of the water pocket:enzyme architecture might constitute an element of importance for enzymatic activity of this and possibly other proteins.


Assuntos
Anidrase Carbônica II/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Água/química , Anidrase Carbônica II/genética , Domínio Catalítico , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Ligação Proteica , Conformação Proteica
9.
Acc Chem Res ; 51(6): 1386-1395, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29763290

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopic technique that is used for characterization of molecular properties in the solid phase at atomic resolution. In particular, using the approach of magic-angle spinning (MAS), ssNMR has seen widespread applications for topics ranging from material sciences to catalysis, metabolomics, and structural biology, where both isotropic and anisotropic parameters can be exploited for a detailed assessment of molecular properties. High-resolution detection of protons long represented the holy grail of the field. With its high natural abundance and high gyromagnetic ratio, 1H has naturally been the most important nucleus type for the solution counterpart of NMR spectroscopy. In the solid state, similar benefits are obtained over detection of heteronuclei, however, a rocky road led to its success as their high gyromagnetic ratio has also been associated with various detrimental effects. Two exciting approaches have been developed in recent years that enable proton detection: After partial deuteration of the sample to reduce the proton spin density, the exploitation of protons could begin. Also, faster MAS, nowadays using tiny rotors with frequencies up to 130 kHz, has relieved the need for expensive deuteration. Apart from the sheer gain in sensitivity from choosing protons as the detection nucleus, the proton chemical shift and several other useful aspects of protons have revolutionized the field. In this Account, we are describing the fundamentals of proton detection as well as the arising possibilities for characterization of biomolecules as associated with the developments in our own lab. In particular, we focus on facilitated chemical-shift assignment, structure calculation based on protons, and on assessment of dynamics in solid proteins. For example, the proton chemical-shift dimension adds additional information for resonance assignments in the protein backbone and side chains. Chemical shifts and high gyromagnetic ratio of protons enable direct readout of spatial information over large distances. Dynamics in the protein backbone or side chains can be characterized efficiently using protons as reporters. For all of this, the sample amounts necessary for a given signal-to-noise have drastically shrunk, and new methodology enables assessment of molecules with increasing monomer molecular weight and complexity. Taken together, protons are able to overcome previous limitations, by speeding up processes, enhancing accuracies, and increasing the accessible ranges of ssNMR spectroscopy, as we shall discuss in detail in the following. In particular, these methodological developments have been pushing solid-state NMR into a new regime of biological topics as they realistically allow access to complex cellular molecules, elucidating their functions and interactions in a multitude of ways.

10.
Angew Chem Int Ed Engl ; 58(51): 18691-18696, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31573740

RESUMO

The RNA world hypothesis assumes that life on Earth began with nucleotides that formed information-carrying RNA oligomers able to self-replicate. Prebiotic reactions leading to the contemporary nucleosides are now known, but their execution often requires specific starting materials and lengthy reaction sequences. It was therefore proposed that the RNA world was likely proceeded by a proto-RNA world constructed from molecules that were likely present on the early Earth in greater abundance. Herein, we show that the prebiotic starting molecules bis-urea (biuret) and tris-urea (triuret) are able to directly react with ribose. The urea-ribosides are remarkably stable because they are held together by a network of intramolecular, bifurcated hydrogen bonds. This even allowed the synthesis of phosphoramidite building blocks and incorporation of the units into RNA. Investigations of the nucleotides' base-pairing potential showed that triuret:G RNA base pairs closely resemble U:G wobble base pairs. Based on the probable abundance of urea on the early Earth, we postulate that urea-containing RNA bases are good candidates for a proto-RNA world.


Assuntos
Nucleosídeos/química , RNA/química , Ureia/química , Humanos
11.
Chemphyschem ; 19(1): 34-39, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29149466

RESUMO

Conformational exchange in proteins is a major determinant in protein functionality. In particular, the µs-ms timescale is associated with enzymatic activity and interactions between biological molecules. We show here that a comprehensive data set of R1ρ relaxation dispersion profiles employing multiple effective fields and tilt angles can be easily obtained in perdeuterated, partly back-exchanged proteins at fast magic-angle spinning and further complemented with chemical-exchange saturation transfer NMR experiments. The approach exploits complementary sources of information and enables the extraction of multiple exchange parameters for µs-ms timescale conformational exchange, most notably including the sign of the chemical shift differences between the ground and excited states.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/metabolismo , Conformação Proteica , Proteínas/química , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 112(40): 12390-5, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392539

RESUMO

Regulated intramembrane proteolysis (RIP) is a conserved mechanism crucial for numerous cellular processes, including signaling, transcriptional regulation, axon guidance, cell adhesion, cellular stress responses, and transmembrane protein fragment degradation. Importantly, it is relevant in various diseases including Alzheimer's disease, cardiovascular diseases, and cancers. Even though a number of structures of different intramembrane proteases have been solved recently, fundamental questions concerning mechanistic underpinnings of RIP and therapeutic interventions remain. In particular, this includes substrate recognition, what properties render a given substrate amenable for RIP, and how the lipid environment affects the substrate cleavage. Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors are critical regulators of genes involved in cholesterol/lipid homeostasis. After site-1 protease cleavage of the inactive SREBP transmembrane precursor protein, RIP of the anchor intermediate by site-2 protease generates the mature transcription factor. In this work, we have investigated the labile anchor intermediate of SREBP-1 using NMR spectroscopy. Surprisingly, NMR chemical shifts, site-resolved solvent exposure, and relaxation studies show that the cleavage site of the lipid-signaling protein intermediate bears rigid α-helical topology. An evolutionary conserved motif, by contrast, interrupts the secondary structure ∼9-10 residues C-terminal of the scissile bond and acts as an inducer of conformational flexibility within the carboxyl-terminal transmembrane region. These results are consistent with molecular dynamics simulations. Topology, stability, and site-resolved dynamics data suggest that the cleavage of the α-helical substrate in the case of RIP may be associated with a hinge motion triggered by the molecular environment.


Assuntos
Proteínas de Membrana/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteólise , Homologia de Sequência de Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
13.
J Comput Chem ; 38(20): 1762-1773, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28488267

RESUMO

Non-covalent interactions between ions and aromatic rings play an important role in the stabilization of macromolecular complexes; of particular interest are peptides and proteins containing aromatic side chains (Phe, Trp, and Tyr) interacting with negatively (Asp and Glu) and positively (Arg and Lys) charged amino acid residues. The structures of the ion-aromatic-ring complexes are the result of an interaction between the large quadrupole moment of the ring and the charge of the ion. Four attractive interaction types are proposed to be distinguished based on the position of the ion with respect to the plane of the ring: perpendicular cation-π (CP⊥ ), co-planar cation-π (CP∥ ), perpendicular anion-π (AP⊥ ), and co-planar anion-π (AP∥ ). To understand more than the basic features of these four interaction types, a systematic, high-level quantum chemical study is performed, using the X- + C6 H6 , M+ + C6 H6 , X- + C6 F6 , and M+ + C6 F6 model systems with X- = H- , F- , Cl- , HCOO- , CH3 COO- and M+ = H+ , Li+ , Na+ , NH4+, CH3 NH3+, whereby C6 H6 and C6 F6 represent an electron-rich and an electron-deficient π system, respectively. Benchmark-quality interaction energies with small uncertainties, obtained via the so-called focal-point analysis (FPA) technique, are reported for the four interaction types. The computations reveal that the interactions lead to significant stabilization, and that the interaction energy order, given in kcal mol-1 in parentheses, is CP⊥ (23-37) > AP⊥ (14-21) > CP∥ (9-22) > AP∥ (6-16). A natural bond orbital analysis performed leads to a deeper qualitative understanding of the four interaction types. To facilitate the future quantum chemical characterization of ion-aromatic-ring interactions in large biomolecules, the performance of three density functional theory methods, B3LYP, BHandHLYP, and M06-2X, is tested against the FPA benchmarks, with the result that the M06-2X functional performs best. © 2017 Wiley Periodicals, Inc.

14.
Solid State Nucl Magn Reson ; 87: 86-95, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28438365

RESUMO

Solid-state NMR spectroscopy can provide site-resolved information about protein dynamics over many time scales. Here we combine protein deuteration, fast magic-angle spinning (~45-60kHz) and proton detection to study dynamics of ubiquitin in microcrystals, and in particular a mutant in a region that undergoes microsecond motions in a ß-turn region in the wild-type protein. We use 15N R1ρ relaxation measurements as a function of the radio-frequency (RF) field strength, i.e. relaxation dispersion, to probe how the G53A mutation alters these dynamics. We report a population-inversion of conformational states: the conformation that in the wild-type protein is populated only sparsely becomes the predominant state. We furthermore explore the potential to use amide-1H R1ρ relaxation to obtain insight into dynamics. We show that while quantitative interpretation of 1H relaxation remains beyond reach under the experimental conditions, due to coherent contributions to decay, one may extract qualitative information about flexibility.


Assuntos
Proteínas Mutantes/química , Mutação , Ressonância Magnética Nuclear Biomolecular , Ubiquitina/química , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/genética , Conformação Proteica , Ubiquitina/genética
15.
Phys Chem Chem Phys ; 18(12): 8359-63, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26686237

RESUMO

Interactions within proteins, with their surrounding, and with other molecules are mediated mostly by hydrogen atoms. In fully protonated, inhomogeneous, or larger proteins, however, aliphatic proton shifts tend to show little dispersion despite fast Magic-Angle Spinning. 3D correlations dispersing aliphatic proton shifts by their better resolved amide N/H shifts can alleviate this problem. Using inverse second-order cross-polarization (iSOCP), we here introduce dedicated and improved means to sensitively link site-specific chemical shift information from aliphatic protons with a backbone amide resolution. Thus, even in cases where protein deuteration is impossible, this approach may enable access to various aspects of protein functions that are reported on by protons.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Isótopos de Carbono/química , Marcação por Isótopo , Isótopos de Nitrogênio/química , Domínios Proteicos , Prótons , Espectrina/química
16.
J Biomol NMR ; 62(3): 303-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975745

RESUMO

Proton detection in solid-state NMR has seen a tremendous increase in popularity in the last years. New experimental techniques allow to exploit protons as an additional source of information on structure, dynamics, and protein interactions with their surroundings. In addition, sensitivity is mostly improved and ambiguity in assignment experiments reduced. We show here that, in the solid state, sequential amide-to-amide correlations turn out to be an excellent, complementary way to exploit amide shifts for unambiguous backbone assignment. For a general assessment, we compare amide-to-amide experiments with the more common (13)C-shift-based methods. Exploiting efficient CP magnetization transfers rather than less efficient INEPT periods, our results suggest that the approach is very feasible for solid-state NMR.


Assuntos
Amidas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Animais , Galinhas , Modelos Moleculares , Conformação Proteica , Espectrina/química
17.
Chemphyschem ; 16(18): 3791-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26359781

RESUMO

Solid-state nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to elucidate the atomic-resolution structures of insoluble proteins. The major bottleneck is the difficulty to obtain valuable long-distance structural information. Here, we propose the use of distance restraints as long as 32 Å, obtained from the quantification of transverse proton relaxation induced by a methanethiosulfonate spin label (MTSL). Combined with dipolar proton-proton distance restraints, this method allows us to obtain protein structures with excellent precision from single spin-labeled 1 mg protein samples using fast magic angle spinning.


Assuntos
Sondas Moleculares , Proteínas/química , Prótons , Limite de Detecção , Espectroscopia de Ressonância Magnética
18.
Biochemistry ; 53(22): 3540-52, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24828921

RESUMO

Exendin-4 (Ex4) is a potent glucagon-like peptide-1 receptor agonist, a drug regulating the plasma glucose level of patients suffering from type 2 diabetes. The molecule's poor solubility and its readiness to form aggregates increase the likelihood of unwanted side effects. Therefore, we designed Ex4 analogues with improved structural characteristics and better water solubility. Rational design was started from the parent 20-amino acid, well-folded Trp cage (TC) miniprotein and involved the step-by-step N-terminal elongation of the TC head, resulting in the 39-amino acid Ex4 analogue, E19. Helical propensity coupled to tertiary structure compactness was monitored and quantitatively analyzed by electronic circular dichroism and nuclear magnetic resonance (NMR) spectroscopy for the 14 peptides of different lengths. Both (15)N relaxation- and diffusion-ordered NMR measurements were established to investigate the inherent mobility and self-association propensity of Ex4 and E19. Our designed E19 molecule has the same tertiary structure as Ex4 but is more helical than Ex4 under all studied conditions; it is less prone to oligomerization and has preserved biological activity. These conditions make E19 a perfect lead compound for further drug discovery. We believe that this structural study improves our understanding of the relationship between local molecular features and global physicochemical properties such as water solubility and could help in the development of more potent Ex4 analogues with improved pharmacokinetic properties.


Assuntos
Desenho de Fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeos/química , Peçonhas/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Exenatida , Peptídeo 1 Semelhante ao Glucagon/síntese química , Peptídeos/síntese química , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Peçonhas/síntese química
19.
Chemistry ; 19(8): 2628-40, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23319425

RESUMO

The 20 residue long Trp-cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the (15)N and (13)C/(15)N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible--fully folded, unfolded and intermediate--fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔH(F-I), T(m)(F-I), ΔC(p)(F-I) and ΔH(I-U), T(m)(I-U), ΔC(p)(I-U)) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp-cage distinct intermediates evolve: a fast-exchanging intermediate is present under neutral conditions, whereas a slow-exchanging intermediate-pair emerges at acidic pH. The fast-exchanging intermediate has a native-like structure with a short α-helix in the G(11)-G(15) segment, whereas the slow-exchanging intermediate-pair presents elevated dynamics, with no detectable native-like residue contacts in which the G(11)-P(12) peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.


Assuntos
Peptídeos/síntese química , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Temperatura , Termodinâmica
20.
ACS Phys Chem Au ; 2(3): 237-246, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35637781

RESUMO

5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA