Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(15): 3383-3394, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31020370

RESUMO

This study presents a systematic investigation of factors influencing the chromatographic separation of diastereomers of phosphorothioated pentameric oligonucleotides as model solutes. Separation was carried out under ion-pairing conditions using an XBridge C18 column. For oligonucleotides with a single sulfur substitution, the diastereomer selectivity was found to increase with decreasing carbon chain length of the tertiary alkylamine used as an ion-pair reagent. Using an ion-pair reagent with high selectivity for diastereomers, triethylammonium, it was found the selectivity increased with decreased ion-pair concentration and shallower gradient slope. Selectivity was also demonstrated to be dependent on the position of the modified linkage. Substitutions at the center of the pentamer resulted in higher diastereomer selectivity compared to substitutions at either end. For mono-substituted oligonucleotides, the retention order and stereo configuration were consistently found to be correlated, with Rp followed by Sp, regardless of which linkage was modified. The type of nucleobase greatly affects the observed selectivity. A pentamer of cytosine has about twice the diastereomer selectivity of that of thymine. When investigating the retention of various oligonucleotides eluted using tributylammonium as the ion-pairing reagent, no diastereomer selectivity could be observed. However, retention was found to be dependent on both the degree and position of sulfur substitution as well as on the nucleobase. When analyzing fractions collected in the front and tail of overloaded injections, a significant difference was found in the ratio between Rp and Sp diastereomers, indicating that the peak broadening observed when using tributylammonium could be explained by partial diastereomer separation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oligonucleotídeos Fosforotioatos/química , Butilaminas/química , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Etilaminas/química , Indicadores e Reagentes , Oligonucleotídeos Fosforotioatos/isolamento & purificação , Estereoisomerismo , Enxofre/análise
2.
Biochim Biophys Acta ; 1827(2): 189-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22735192

RESUMO

The microbial metabolism of oxochlorates is part of the biogeochemical cycle of chlorine. Organisms capable of growth using perchlorate or chlorate as respiratory electron acceptors are also interesting for applications in biotreatment of oxochlorate-containing effluents or bioremediation of contaminated areas. In this review, we discuss the reactions of oxochlorate respiration, the corresponding enzymes, and the relation to respiratory electron transport that can contribute to a proton gradient across the cell membrane. Enzymes specific for oxochlorate respiration are oxochlorate reductases and chlorite dismutase. The former belong to DMSO reductase family of molybdenum-containing enzymes. The heme protein chlorite dismutase, which decomposes chlorite into chloride and molecular oxygen, is only distantly related to other proteins with known functions. Pathways for electron transport may be different in perchlorate and chlorate reducers, but appear in both cases to be similar to pathways found in other respiratory systems. This article is part of a Special Issue entitled: Evolutionary aspects bioenergetic systems.


Assuntos
Cloratos/metabolismo , Metabolismo Energético , Anaerobiose , Transporte de Elétrons
3.
J Chromatogr A ; 1687: 463687, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36470076

RESUMO

Tributylamine (TBuA) and triethylamine (TEtA) are the most commonly used ion pair reagents in ion pair chromatography especially for the analysis of oligonucleotides. In order to improve the understanding of the retention and separation mechanism of oligonucleotides in ion pair chromatography, it is important to understand the retention mechanism and the nature of interaction of these ion pair reagents with the stationary phase in the chromatographic column. Adsorption isotherm is helpful in evaluating such interactions, and subsequently predicting the retention mechanism. Alkylamines are very polar molecules which lack suitable chromophore and are commonly present in charged forms. Therefore, their determination and the subsequent acquisition of their adsorption isotherms using traditional liquid chromatography is very difficult. In this study, we first developed an analytical method for the determination of TBuA and TEtA in a typical chromatographic mobile phase (acetonitrile-water) and then used the same method to acquire the adsorption isotherms for tributylammonium acetate (TBuAA) and triethylammonium acetate (TEtAA). This method started with the conversion of the alkylammonium ions to free neutral forms by treating the sample with a strong base, followed by pentane-mediated extraction and finally the analysis of the extracts using gas chromatography-flame ionization detector (GC-FID). This three-step method was validated for parameters like range, linearity, intra-day and inter-day precision and accuracy, limit of detection and limit of quantitation. For the adsorption isotherms, the C18 column was first equilibrated with the solutions having different concentrations of alkylammonium ions and then stripped with eluent devoid of alkylammonium ions. Several stripping eluents were investigated and it was discovered that the eluent requirement could be decreased by the addition of sodium chloride. The effluents from the stripping phase were collected and analyzed using the developed analytical method to acquire the adsorption data. Under the investigated conditions, adsorption of TBuAA and TEtAA showed type III and type I isotherm behavior respectively.


Assuntos
Oligonucleotídeos , Água , Indicadores e Reagentes/análise , Adsorção , Cromatografia Líquida , Oligonucleotídeos/análise , Cromatografia Líquida de Alta Pressão/métodos
4.
Appl Environ Microbiol ; 78(12): 4380-5, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22492460

RESUMO

The ability of microorganisms to perform dissimilatory (per)chlorate reduction is, for most species, known to be oxygen sensitive. Consequently, bioremediation processes for the removal of oxochlorates will be disturbed if oxygen is present. We measured the expression of chlorite dismutase and chlorate reductase in the presence of different terminal electron acceptors in the chlorate reducer Ideonella dechloratans. Enzyme activity assays and mRNA analyses by real-time quantitative reverse transcription (qRT)-PCR were performed on cell extracts from cells grown aerobically with and without chlorate and on cells grown anaerobically in the presence of chlorate. Our results showed that both chlorite dismutase and chlorate reductase are expressed during aerobic growth. However, transfer to anaerobic conditions with chlorate resulted in significantly enhanced enzyme activities and mRNA levels for both enzymes. Absence of oxygen was necessary for the induction to occur, since chlorate addition under aerobic conditions produced neither increased enzyme activities nor higher relative levels of mRNA. For chlorite dismutase, the observed increase in activity was on the same order of magnitude as the increase in the relative mRNA level, indicating gene regulation at the transcriptional level. However, chlorate reductase showed about 200 times higher enzyme activity in anaerobically induced cells, whereas the increase in mRNA was only about 10-fold, suggesting additional mechanisms influence the enzyme activity.


Assuntos
Betaproteobacteria/efeitos dos fármacos , Betaproteobacteria/enzimologia , Cloratos/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxirredutases/biossíntese , Oxigênio/metabolismo , Aerobiose , Anaerobiose , Betaproteobacteria/genética , Perfilação da Expressão Gênica , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Microbiologyopen ; 9(7): e1049, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319739

RESUMO

Regulation of the expression of the gene for chlorite dismutase (cld), located on the chlorate reduction composite transposon of the chlorate reducer Ideonella dechloratans, was studied. A 200 bp upstream sequence of the cld gene, and mutated and truncated versions thereof, was used in a reporter system in Escherichia coli. It was found that a sequence within this upstream region, which is nearly identical to the canonical FNR-binding sequence of E. coli, is necessary for anaerobic induction of the reporter gene. Anaerobic induction was regained in an FNR-deficient strain of E. coli when supplemented either with the fnr gene from E. coli or with a candidate fnr gene cloned from I. dechloratans. In vivo transcription of the suggested fnr gene of I. dechloratans was demonstrated by qRT-PCR. Based on these results, the cld promoter of I. dechloratans is suggested to be a class II-activated promoter regulated by an FNR-type protein of I. dechloratans. No fnr-type genes have been found on the chlorate reduction composite transposon of I. dechloratans, making anaerobic upregulation of the cld gene after a gene transfer event dependent on the presence of an fnr-type gene in the recipient.


Assuntos
Burkholderiales/genética , Burkholderiales/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Oxirredutases/biossíntese , Oxirredutases/genética , Burkholderiales/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Percloratos/metabolismo , Regiões Promotoras Genéticas/genética
6.
FEMS Microbiol Lett ; 362(6)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673284

RESUMO

The chlorate-respiring bacterium Ideonella dechloratans is a facultative anaerobe that can use both oxygen and chlorate as terminal electron acceptors. The genes for the enzymes chlorate reductase (clrABDC) and chlorite dismutase, necessary for chlorate metabolism and probably acquired by lateral gene transfer, are located in a gene cluster that also includes other genes potentially important for chlorate metabolism. Among those are a gene for cytochrome c (cyc) whose gene product may serve as an electron carrier during chlorate reduction, a cofactor biosynthesis gene (mobB) and a predicted transcriptional regulator (arsR). Only chlorate reductase and chlorite dismutase have been shown to be expressed in vivo. Here, we report the in vivo production of a single polycistronic transcript covering eight open reading frames including clrABDC, cyc, mobB and arsR. Transcription levels of the cyc and clrA genes were compared to each other by the use of qRT-PCR in RNA preparations from cells grown under aerobic or chlorate reducing anaerobic conditions. The two genes showed the same mRNA levels under both growth regimes, indicating that no transcription termination occurs between them. Higher transcription levels were observed at growth without external oxygen supply. Implications for electron pathway integration following lateral gene transfer are discussed.


Assuntos
Betaproteobacteria/genética , Cloratos/metabolismo , Citocromos c/genética , Família Multigênica , Oxirredutases/genética , Anaerobiose , Betaproteobacteria/enzimologia , Citocromos c/metabolismo , Fases de Leitura Aberta , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA