Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(14): 6451-6458, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511518

RESUMO

Integrating interfacial molecular nanolayers (MNL) with inorganic nanolayers is of interest for understanding processing-structure/chemistry correlations in hybrid nanolaminates. Here, we report the synthesis of Co/biphenyldithiol (BPDT)/Co nanolayer sandwiches by metal sputter-deposition and molecular sublimation. The density and surface roughness of the Co layers deposited on the native oxide are invariant with the Ar pressure pAr during deposition. In contrast, the Co layer roughness rCo deposited on top of the BPDT MNL increases with pAr, and correlates with a higher degree of Co oxidation. Increased roughening is attributed to MNL-accentuated self-shadowing of low mobility Co atoms at high pAr, which consequently increases Co oxidation. These results indicating MNL-induced effects on the morphology and chemistry of the inorganic layers should be of importance for tailoring nanolayered hybrid interfaces and laminates.

2.
ACS Appl Nano Mater ; 7(10): 11225-11233, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38808308

RESUMO

Nanoscale hybrid inorganic-organic multilayers are attractive for accessing emergent phenomena and properties through superposition of nanomolecularly-induced interface effects for diverse applications. Here, we demonstrate the effects of interfacial molecular nanolayers (MNLs) of organo-diphosphonates on the growth and stability of titania nanolayers during the synthesis of titania/MNL multilayers by sequential atomic layer deposition and single-cycle molecular layer deposition. Interfacial organo-diphosphonate MNLs result in ∼20-40% slower growth of amorphous titania nanolayers and inhibit anatase nanocrystal formation from them when compared to amorphous titania grown without MNLs. Both these effects are more pronounced in multilayers with aliphatic backbone-MNLs and likely related to impurity incorporation and incomplete reduction of the titania precursor indicated by our spectroscopic analyses. In contrast, both MNLs result in two-fold higher titania nanolayer roughness, suggesting that roughening is primarily due to MNL bonding chemistry. Such MNL-induced effects on inorganic nanolayer growth rate, roughening, and stability are germane to realizing high-interface-fraction hybrid nanolaminate multilayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA