Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 22(19): 5320-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25150092

RESUMO

Tuberculosis (TB) is a difficult to treat disease caused by the bacterium Mycobacterium tuberculosis. The need for improved therapies is required to kill different M. tuberculosis populations present during infection and to kill drug resistant strains. Protein complexes associated with energy generation, required for the survival of all M. tuberculosis populations, have shown promise as targets for novel therapies (e.g., phenothiazines that target type II NADH dehydrogenase (NDH-2) in the electron transport chain). However, the low efficacy of these compounds and their off-target effects has made the development of phenothiazines as a therapeutic agent for TB limited. This study reports that a series of alkyltriphenylphosphonium (alkylTPP) cations, a known intracellular delivery functionality, improves the localization and effective concentration of phenothiazines at the mycobacterial membrane. AlkylTPP cations were shown to accumulate at biological membranes in a range of bacteria and lipophilicity was revealed as an important feature of the structure-function relationship. Incorporation of the alkylTPP cationic function significantly increased the concentration and potency of a series of phenothiazine derivatives at the mycobacterial membrane (the site of NDH-2), where the lead compound 3a showed inhibition of M. tuberculosis growth at 0.5µg/mL. Compound 3a was shown to act in a similar manner to that previously published for other active phenothiazines by targeting energetic processes (i.e., NADH oxidation and oxygen consumption), occurring in the mycobacterial membrane. This shows the enormous potential of alkylTPP cations to improve the delivery and therefore efficacy of bioactive agents targeting oxidative phosphorylation in the mycobacterial membrane.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Fenotiazinas/química , Fenotiazinas/farmacologia , Antibacterianos/síntese química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organofosforados/química , Fenotiazinas/síntese química , Relação Estrutura-Atividade
2.
J Mater Sci Mater Med ; 25(12): 2743-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25085242

RESUMO

An amine-functionalized succinyl chitosan and an oxidized dextran were synthesized and mixed in aqueous solution to form an in situ chitosan/dextran injectable, surgical hydrogel for adhesion prevention. Rheological characterization showed that the rate of gelation and moduli were tunable based on amine and aldehyde levels, as well as polymer concentrations. The CD hydrogels have been shown to be effective post-operative aids in prevention of adhesions in ear, nose, and throat surgeries and abdominal surgeries in vivo. In vitro biocompatibility testing was performed on CD hydrogels containing one of two oxidized dextrans, an 80 % oxidized (CD-100) or 25 % (CD-25) oxidized dextran. However, the CD-100 hydrogel showed moderate cytotoxicity in vitro to Vero cells. SC component of the CD hydrogel, however, showed no cytotoxic effect. In order to increase the biocompatibility of the hydrogel, a lower aldehyde level hydrogel was developed. CD-25 was found to be non-cytotoxic to L929 fibroblasts. The in vivo pro-inflammatory response of the CD-25 hydrogel, after intraperitoneal injection in BALB/c mice, was also determined by measuring serum TNF-α levels and by histological analysis of tissues. TNF-α levels were similar in mice injected with CD-25 hydrogel as compared to the negative saline injected control; and were significantly different (P < 0.05) as compared to the positive, lipopolysaccharide, injected control. Histological examination revealed no inflammation seen in CD hydrogel injected mice. The results of these in vitro and in vivo studies demonstrate the biocompatibility of the CD hydrogel as a post-operative aid for adhesion prevention.


Assuntos
Curativos Hidrocoloides , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/fisiologia , Quitosana/química , Dextranos/química , Hidrogéis/química , Aderências Teciduais/prevenção & controle , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Chlorocebus aethiops , Dextranos/farmacologia , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Humanos , Hidrogéis/farmacologia , Teste de Materiais , Células Vero
3.
Science ; 360(6390): 724, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29773740
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA