Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 80(1): 294-307, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33388840

RESUMO

Exposure to fluoride concentrations above a threshold of 1.5 mg/L can cause joint pains, restricted mobility, skeletal and dental fluorosis. This study aims to determine the hydrochemical evolution of the fluoride-rich groundwater and estimate the risk of fluoride exposure to the residents of semi-arid northeastern part of Rajasthan, India. The methodology involves measurement of fluoride and other ionic concentrations in groundwater using ion chromatography, followed by an estimation of the cumulative density function and fluorosis risk. The fluoride concentration in water samples varied from 0.04 to 8.2 mg/L with 85% samples falling above the permissible limit. The empirical cumulative density function was used to estimate the percentage and degree of health risks associated with the consumption of F- contaminated water. It is found that 55% of the samples indicate risk of dental fluorosis, 42% indicate risk of deformities to knee and hip bones, and 18% indicate risk of crippling fluorosis. In addition, instances of high nitrate concentrations above the permissible limit of 45 mg/L are also found in 13% of samples. The fluoride rich groundwater is mainly associated with the Na-HCO3-Cl type water facies while low fluoride groundwater shows varied chemical facies. The saturation index values indicate a high probability of a further increase in F- concentration in groundwater of this region. The calculated fluoride exposure risk for the general public in the study area is 3-6 times higher than the allowed limit of 0.05 mg/kg/day. Based on the results of this study, a fluorosis index map was prepared for the study area. The northern and northeastern parts are less prone to fluorosis, whereas the south-central and southwestern parts are highly vulnerable to fluorosis. The inferences from this study help to prioritize the regions that need immediate attention for remediation.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Fluoretos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Doenças Ósseas/epidemiologia , Clima , Fluoretos/efeitos adversos , Fluorose Dentária/epidemiologia , Humanos , Índia , Nitratos/efeitos adversos , Nitratos/análise , Medição de Risco , Poluentes Químicos da Água/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38977555

RESUMO

Urbanization has severely impacted the world water resources especially the shallow groundwater systems. There is a need of a robust method for quantifying the water quality degradation, which is still a challenge for most of the urban centers across the world. In this study, a highly urbanized region of Ganga basin is selected to critically evaluate commonly used WQIs and compare with fuzzy modeling. A total of 28 water samples were collected from diverse sources (surface and groundwaters) in the vicinity of urban region covering an area of 216 km2 during the premonsoon period. TDS, TH, NO3-, and F- values were found to be above the permissible limits in 57%, 89%, 4%, and 7% samples, respectively. The WQIs (entropy and integrated) outputs were found to be similar with 89% of the samples falling under moderate category. Fuzzy modeling was carried out allowing user-defined weighting factors for the most influential ions, and the output suggested 96% of the samples falling under moderate to excellent categories. Based on the chemical results and considering the lithology of the study area, the geochemical reactions controlling the water quality were deduced. This study outlines a systematic approach of evaluating the overall water quality of an urban region highlighting the merits and limitations of WQIs. It also justifies the immediate need to generate more robust data to achieve the sustainable development goals 6 (clean water and sanitation) and 11 (sustainability of cities and human settlement).

3.
Sci Total Environ ; 807(Pt 2): 151401, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752874

RESUMO

Northwest part of India is an agriculturally active region experiencing rapid rise in food production and steep decline in groundwater levels. The freshwater requirement is mostly met by regional aquifers which are inherently heterogeneous and undergoing extensive human inducted perturbations. These factors pose great challenge in planning sustainable groundwater management. In this study, environmental isotopes (2H, 18O, 13C, 3H and 14C) were applied to understand the regional recharge mechanism during the last 30 ka and hydrogeological controls impacting the aquifer dynamics and inter-aquifer connectivity of the Ghaggar River basin. Rayleigh distillation modeling indicates that major groundwater recharge is through monsoonal rains while rainfall during other seasons is lost either through evaporation or surface runoff. The evaporation loss is estimated to be 1.5 to 10% and more pronounced in the southern part of the study area. Regional recharge from Siwalik foothills contributes to groundwater up to a depth of 250 m below ground level (bgl). The lumped parameter modeling (LPM) using 3H data estimated groundwater ages 34.7 ± 12.1 and 95.8 ± 11.3 years for shallow and deep aquifers respectively. Radiocarbon dating indicates presence of paleogroundwater (0.4 to 28.6 ka before present, BP) in the deeper aquifer of central part of the study area. Interpretation of the paleowater and paleoprecipitation isotope data in conjunction with available paleogeomorphologic information suggests two different recharge phases. Phase I extending from ~28.6 to 10.1 ka, showed ~48-61% contribution from isotopically depleted perennial river system. Phase II spanning from ~12.5 to 0.4 ka BP showed insignificant contribution from river recharge, which can be attributed to the decreased strength of the perennial river flows. The research methodology proposed in this study will be beneficial in improving the understanding of groundwater storage and its variability with changes in regional climatic conditions.


Assuntos
Água Subterrânea , Água Doce , Humanos , Índia , Chuva , Rios
4.
Environ Sci Pollut Res Int ; 28(15): 18553-18566, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33001397

RESUMO

Fluoride contamination in groundwater is a major problem throughout the world as well as in India. High-fluoride content was reported in the hot springs of Atri and Tarbalo sites in Odisha, India, and residents of nearby villages showed the manifestations of fluorosis. Around 39% of the groundwater samples showed fluoride concentration > 1 mg/l, higher than the desirable limit specified by the WHO. The dominant chemical facies of groundwaters were ions of Ca-Mg-HCO3 and Ca-Na-Cl, which infers the lithological control over the hydrochemistry of this area. A strong correlation between fluoride and other major ions could not be found, suggesting that multiple processes are responsible for the enriched fluoride concentration observed in the study area. The major geochemical processes include dissolution of fluoride-bearing minerals from the rocks, evapotranspiration, agricultural input and mixing of cold groundwater with hot spring water containing high fluoride. The maximum fluoride exposure doses through drinking water from fluoride-contaminated tube wells were estimated to be 0.07 mg/kg/d for infants, 0.125 mg/kg/d for children and 0.06 mg/kg/d for adults, which are higher than the minimum risk level (0.05 mg/kg/d). Exposure doses of fluoride indicate that exposure risk is doubled for children in comparison to infants and adults, which might cause severe dental fluorosis and other ailments. Considering the environmental and hydrological set up of the study area, membrane defluoridation process can be suggested as the best remediation method. Nalgonda technique, dilution of fluoride-rich groundwater and better nutrition containing calcium and vitamin C are other possible options that can be included for early mitigation of fluoride contamination.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , Monitoramento Ambiental , Fluoretos/análise , Humanos , Índia , Lactente , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 789: 147860, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062467

RESUMO

The Indo-Gangetic multi-aquifer system provides water supplies to the most populous regions of the Indian subcontinent, however precise knowledge on the sources and dynamics of groundwater is still missing. Environmental isotopes (2H, 18O, 13C, 3H and 14C) and hydrochemical modeling tools were used in this study in the multi-tiered aquifers underlying the Middle Gangetic Plains (MGP) to investigate the source of recharge, aquifer dynamics and inter-connectivity among aquifers. Within a depth span of 300 m, three aquifers, with contrasting recharge sources and dynamics, were delineated in this Sone-Ganga-Punpun interfluve region, with limited cross-aquifer hydraulic interconnections. The chemistry evolves from Ca-HCO3 to Na-Ca-HCO3 in the shallow semiconfined Aquifer-I with a mean transit time of 20-23 years. The dominant recharge to Aquifer-I is from the river inflows and rainwater percolation through paleochannels. The semi-confined to confined Aquifer-II holds fresh quality groundwater with mixed water facies (Mg/Ca-Na-HCO3). The modeled age of Aquifer-II groundwater is found to be 205-520 years, which is supported by presence of negligible tritium and minor variations in stable isotopes. Outcrop regions of Aquifer-II sediments in the marginal alluvial areas and deep-seated paleochannels in the southwestern part are the potential zones for Aquifer-II recharge. A deep confined Aquifer-III with fresh quality of groundwater is identified below 220 m. This aquifer is characterized by old age (~3.5 to 4.7 ka BP) and enriched δ18O (-5.7‰). These results along with the existing paleoclimate records of this region infer that Aquifer-III is recharged during an arid climate. The marginal alluvial plains are the probable recharge zones for Aquifer-III. This study helped in conceptualizing the groundwater flow paths in multi-tiered aquifers of MGP. The knowledge and understanding would extend crucial inputs for the sustainable development of deep aquifers not only in the MGP but also in other regions of Indo-Gangetic Plains.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Índia , Isótopos/análise , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA