Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261341

RESUMO

Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.


Assuntos
MicroRNAs , Humanos , Reprodutibilidade dos Testes , Ciclo Celular , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
2.
Artigo em Inglês | MEDLINE | ID: mdl-38597725

RESUMO

Extreme heat caused by climate change is increasing transmission of infectious diseases resulting in a sharp rise in heat-related illness and mortality. Understanding mechanistic link between heat, inflammation and disease is thus important for public health. Thermal hyperpnea, and consequent respiratory alkalosis is crucial in febrile seizures and convulsions induced by heat stress in humans. Here we address what causes thermal hyperpnea in neonates and how is it affected by inflammation. TRPV1, a heat-activated channel is sensitized by inflammation and modulates breathing, and thus may play a key role. To investigate whether inflammatory sensitization of TRPV1 modifies neonatal ventilatory responses to heat stress, leading to respiratory alkalosis and an increased susceptibility to hyperthermic seizures we treated neonatal rats with bacterial lipopolysaccharide, and breathing, arterial pH, in-vitro vagus nerve activity, and seizure susceptibility were assessed during heat stress in the presence or absence of a TRPV1 antagonist (AMG-9810) or shRNA-mediated TRPV1 suppression. Lipopolysaccharide-induced inflammatory preconditioning lowered the threshold temperature and latency of hyperthermic seizures. This was accompanied by increased tidal volume, minute ventilation, expired CO2, and arterial pH (alkalosis). Lipopolysaccharide exposure also elevated vagal spiking and intracellular calcium levels in response to hyperthermia. TRPV1 inhibition with AMG-9810 or shRNA reduced the lipopolysaccharide-induced susceptibility to hyperthermic seizures and altered the breathing pattern to fast shallow breaths (tachypnea), making each breath less efficient and restoring arterial pH. These results indicate that inflammation exacerbates thermal hyperpnea-induced respiratory alkalosis associated with increased susceptibility to hyperthermic seizures, primarily mediated by TRPV1 localized to vagus neurons. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Artigo em Inglês | MEDLINE | ID: mdl-38536485

RESUMO

A considerable amount of fruit waste is being produced every day worldwide. The green synthesis of metal nanoparticles from fruit peel waste can be an innovative, cost-effective, and eco-friendly alternative to traditional methods. Copper nanoparticles (CuNPs) were synthesized by a green method using the pineapple peels extract (PLX) and copper sulfate pentahydrate. The formation of CuNPs was visually identified and detected by UV-Visible spectroscopy. The CuNPs were characterized by Fourier-transform infrared (FTIR) spectroscopy, particle size analyzer, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The antioxidant and reducing power of CuNPs were conducted by %DPPH scavenging and electron transfer-based ferric reducing antioxidant power (FRAP) assay, respectively. The antibacterial properties of CuNPs were determined in gram-positive, and gram-negative bacteria. The results showed that the CuNPs were spherical in shape with mean particle size 290.5 nm. The zeta potential of the nanoparticles was found to be - 12.3 mV indicating the instability in the colloidal state. The FTIR study confirmed the peaks of phytochemicals present in the PLX and the nanoparticles supporting the use of pineapple peels as stabilizing, reducing and capping agents. Both the DPPH and reducing power assay depicted that the synthesized CuNPs had significant antioxidant activity. However, the synthesized CuNPs had strong inhibitory capacity against both gram-positive and gram-negative test organisms. Thus, the CuNPS could be used for its viable antibacterial potential to preserve fruits, flowers, and vegetables from bacterial contamination.

4.
J Chem Inf Model ; 63(7): 1882-1893, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971750

RESUMO

Drug-induced gene expression profiling provides a lot of useful information covering various aspects of drug discovery and development. Most importantly, this knowledge can be used to discover drugs' mechanisms of action. Recently, deep learning-based drug design methods are in the spotlight due to their ability to explore huge chemical space and design property-optimized target-specific drug molecules. Recent advances in accessibility of open-source drug-induced transcriptomic data along with the ability of deep learning algorithms to understand hidden patterns have opened opportunities for designing drug molecules based on desired gene expression signatures. In this study, we propose a deep learning model, Gex2SGen (Gene Expression 2 SMILES Generation), to generate novel drug-like molecules based on desired gene expression profiles. The model accepts desired gene expression profiles in a cell-specific manner as input and designs drug-like molecules which can elicit the required transcriptomic profile. The model was first tested against individual gene-knocked-out transcriptomic profiles, where the newly designed molecules showed high similarity with known inhibitors of the knocked-out target genes. The model was next applied on a triple negative breast cancer signature profile, where it could generate novel molecules, highly similar to known anti-breast cancer drugs. Overall, this work provides a generalized method, where the method first learned the molecular signature of a given cell due to a specific condition, and designs new small molecules with drug-like properties.


Assuntos
Descoberta de Drogas , Transcriptoma , Perfilação da Expressão Gênica , Algoritmos
5.
J Chem Inf Model ; 63(16): 5066-5076, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37585609

RESUMO

Generative artificial intelligence algorithms have shown to be successful in exploring large chemical spaces and designing novel and diverse molecules. There has been considerable interest in developing predictive models using artificial intelligence for drug-like properties, which can potentially reduce the late-stage attrition of drug candidates or predict the properties of novel AI-designed molecules. Concurrently, it is important to understand the contribution of functional groups toward these properties and modify them to obtain property-optimized lead compounds. As a result, there is an increasing interest in the development of explainable property prediction models. However, current explainable approaches are mostly atom-based, where, often, only a fraction of a fragment is shown to be significant. To address the above challenges, we have developed a novel domain-aware molecular fragmentation approach termed post-processing of BRICS (pBRICS), which can fragment small molecules into their functional groups. Multitask models were developed to predict various properties, including the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The fragment importance was explained using the gradient-weighted class activation mapping (Grad-CAM) approach. The method was validated on data sets of experimentally available matched molecular pairs (MMPs). The explanations from the model can be useful for medicinal chemists to identify the fragments responsible for poor drug-like properties and optimize the molecule. The explainability approach was also used to identify the reason behind false positive and false negative MMP predictions. Based on evidence from the existing literature and our analysis, some of these mispredictions were justified. We propose that the quantity, quality, and diversity of the training data will improve the accuracy of property prediction algorithms for novel molecules.


Assuntos
Algoritmos , Inteligência Artificial
6.
J Chem Inf Model ; 62(11): 2685-2695, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35581002

RESUMO

The aim of drug design and development is to produce a drug that can inhibit the target protein and possess a balanced physicochemical and toxicity profile. Traditionally, this is a multistep process where different parameters such as activity and physicochemical and pharmacokinetic properties are optimized sequentially, which often leads to high attrition rate during later stages of drug design and development. We have developed a deep learning-based de novo drug design method that can design novel small molecules by optimizing target specificity as well as multiple parameters (including late-stage parameters) in a single step. All possible combinations of parameters were optimized to understand the effect of each parameter over the other parameters. An explainable predictive model was used to identify the molecular fragments responsible for the property being optimized. The proposed method was applied against the human 5-hydroxy tryptamine receptor 1B (5-HT1B), a protein from the central nervous system (CNS). Various physicochemical properties specific to CNS drugs were considered along with the target specificity and blood-brain barrier permeability (BBBP), which act as an additional challenge for CNS drug delivery. The contribution of each parameter toward molecule design was identified by analyzing the properties of generated small molecules from optimization of all possible parameter combinations. The final optimized generative model was able to design similar inhibitors compared to known inhibitors of 5-HT1B. In addition, the functional groups of the generated small molecules that guide the BBBP predictive model were identified through feature attribution techniques.


Assuntos
Sistema Nervoso Central , Desenho de Fármacos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacocinética , Humanos , Preparações Farmacêuticas/metabolismo
7.
J Chem Inf Model ; 62(21): 5100-5109, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34792338

RESUMO

In recent years, deep learning-based methods have emerged as promising tools for de novo drug design. Most of these methods are ligand-based, where an initial target-specific ligand data set is necessary to design potent molecules with optimized properties. Although there have been attempts to develop alternative ways to design target-specific ligand data sets, availability of such data sets remains a challenge while designing molecules against novel target proteins. In this work, we propose a deep learning-based method, where the knowledge of the active site structure of the target protein is sufficient to design new molecules. First, a graph attention model was used to learn the structure and features of the amino acids in the active site of proteins that are experimentally known to form protein-ligand complexes. Next, the learned active site features were used along with a pretrained generative model for conditional generation of new molecules. A bioactivity prediction model was then used in a reinforcement learning framework to optimize the conditional generative model. We validated our method against two well-studied proteins, Janus kinase 2 (JAK2) and dopamine receptor D2 (DRD2), where we produce molecules similar to the known inhibitors. The graph attention model could identify the probable key active site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.


Assuntos
Aprendizado Profundo , Ligantes , Modelos Moleculares , Desenho de Fármacos , Proteínas
8.
Bioorg Chem ; 129: 106202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272252

RESUMO

Efforts have been devoted for the discovery and development of positive allosteric modulators (PAMs) of 5-HT2CR because of their potential advantages over the orthosteric agonist like Lorcaserin that was withdrawn from the market. On the other hand, pursuing a positive ago-allosteric modulator (PAAM) is considered as beneficial particularly when an agonist is not capable of affecting the potency of the endogenous agonist sufficiently. In search of a suitable PAAM of 5-HT2CR we adopted an in silico based approach that indicated the potential of the 3-(1-hydroxycycloalkyl) substituted isoquinolin-1-one derivatives against the 5-HT2CR as majority of these molecules interacted with the site other than that of Lorcaserin with superior docking scores. These compounds along with the regioisomeric 3-methyleneisoindolin-1-one derivatives were prepared via the Cu(OAc)2 catalyzed coupling of 2-iodobenzamide with 1-ethynylcycloalkanol under ultrasound irradiation. According to the in vitro studies, most of these compounds were not only found to be potent and selective agonists but also emerged as PAAM of 5-HT2CR whereas Lorcaserin did not show PAAM activities. According to the SAR study the isoquinolin-1(2H)-ones appeared as better PAAM than isoindolin-1-ones whereas the presence of hydroxyl group appeared to be crucial for the activity. With the potent PAAM activity for 5-HT2CR (EC50 = 1 nM) and 107 and 86-fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B the compound 4i was identified as a hit molecule. The compound showed good stability in male BALB/c mice brain homogenate (∼85 % remaining after 2 h), moderate stability in the presence of rat liver microsomes (42 % remaining after 1 h) and acceptable PK properties with fast reaching in the brain maintaining âˆ¼ 1:1 brain/plasma concentration ratio. The compound at a dose of 50 mg/kg exhibited decreased trend in the food intake starting from day 3 in S.D. rats, which reached significant by 5th day, and the effect was comparable to Lorcaserin (10 mg/kg) on day 5. Thus, being the first example of PAAM of 5-HT2CR the compound 4i is of further medicinal interest.


Assuntos
Indóis , Isoquinolinas , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Masculino , Camundongos , Ratos , Encéfalo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Camundongos Endogâmicos BALB C , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia
9.
Int J Health Plann Manage ; 37(4): 2063-2080, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35229357

RESUMO

BACKGROUND AND AIM: The COVID-19 pandemic has significantly impacted human lives across the world. In a country like India, with the second highest population in the world, impact of COVID-19 has been diverse and multidimensional. Under such circumstances, vaccination against COVID-19 infection is claimed to be one of the major solutions to contain the pandemic. Understanding of Knowledge, Attitude and Practice (KAP) measures are essential prerequisites to design suitable intervention programs. This paper examines the different KAP factors in Indians towards their decision of vaccine uptake. METHOD: An online questionnaire was administered to Indian respondents. (Pilot study: n = 100, Main study: n = 221) to assess their existing knowledge on COVID-19 infections and vaccination, attitude and intentions towards COVID-19 vaccines and their decision towards COVID-19 vaccine uptake. RESULT: The findings highlighted that existing knowledge on COVID-19 infections and vaccination directly impacted their attitude and intention towards vaccination. The attitude and intention towards COVID-19 vaccines directly impacted their practice of undergoing COVID-19 vaccination. Further, there was a statistically significant and considerably large indirect effect of existing knowledge on COVID-19 infections and vaccination on the practice of undergoing COVID-19 vaccination through attitude and intention towards the vaccine. There was no direct effect of Knowledge (existing knowledge on COVID-19 infections and vaccination) on Practice (decision to undergo COVID-19 vaccination). Therefore, Attitude and intention towards COVID-19 vaccine is the primary mediator between Knowledge (existing knowledge on COVID-19 infections and vaccination) and Practice (decision to undergo COVID-19 vaccination). CONCLUSION: Participants decision towards COVID-19 vaccination decisions are strongly related to their attitude and intentions that confirms the strong role of attitude towards success of COVID-19 vaccination programme. Therefore, 'person-centric' attitude based positive intervention strategies that links their prior knowledge on COVID-19 infections and vaccination must be designed for greater vaccine acceptance amongst Indians.


Assuntos
COVID-19 , Vacinas contra Papillomavirus , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Análise de Mediação , Pandemias , Projetos Piloto , Inquéritos e Questionários , Vacinação
10.
J Physiol ; 599(4): 1335-1354, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33180962

RESUMO

KEY POINTS: We have previously shown that carotid body stimulation by lysophosphatidic acid elicits a reflex stimulation of vagal efferent activity sufficient to cause bronchoconstriction in asthmatic rats. Here, we show that pathophysiological concentrations of asthma-associated prototypical Th2 cytokines also stimulate the carotid bodies. Stimulation of the carotid bodies by these asthmakines involves a PKCε-transient receptor potential vanilloid 1 (TRPV1) signalling mechanism likely dependent on TRPV1 S502 and T704 phosphorylation sites. As the carotid bodies' oxygen sensitivity is independent of PKCε-TRPV1 signalling, systemic blockade of PKCε may provide a novel therapeutic target to reduce allergen-induced asthmatic bronchoconstriction. Consistent with the therapeutic potential of blocking the PKCε-TRPV1 pathway, systemic delivery of a PKCε-blocking peptide suppresses asthmatic respiratory distress in response to allergen and reduces airway hyperresponsiveness to bradykinin. ABSTRACT: The autonomic nervous system orchestrates organ-specific, systemic and behavioural responses to inflammation. Recently, we demonstrated a vital role for lysophosphatidic acid in stimulating the primary autonomic oxygen chemoreceptors, the carotid bodies, in parasympathetic-mediated asthmatic airway hyperresponsiveness. However, the cacophony of stimulatory factors and cellular mechanisms of carotid body activation are unknown. Therefore, we set out to determine the intracellular signalling involved in carotid body-mediated sensing of asthmatic blood-borne inflammatory mediators. We employed a range of in vitro and rat in situ preparations, site-directed mutagenesis, patch-clamp, nerve recordings and pharmacological inhibition to assess cellular signalling. We show that the carotid bodies are also sensitive to asthma-associated prototypical Th2 cytokines which elicit sensory nerve excitation. This provides additional asthmatic ligands contributing to the previously established reflex arc resulting in efferent vagal activity and asthmatic bronchoconstriction. This novel sensing role for the carotid body is mediated by a PKCε-dependent stimulation of transient receptor potential vanilloid 1 (TRPV1), likely via TRPV1 phosphorylation at sites T704 and S502. Importantly, carotid body oxygen sensing was unaffected by blocking either PKCε or TRPV1. Further, we demonstrate that systemic PKCε blockade reduces asthmatic respiratory distress in response to allergen and airway hyperresponsiveness. These discoveries support an inflammation-dependent, oxygen-independent function for the carotid body and suggest that targeting PKCε provides a novel therapeutic option to abate allergic airway disease without altering life-saving autonomic hypoxic reflexes.


Assuntos
Asma , Corpo Carotídeo , Animais , Corpo Carotídeo/metabolismo , Fosforilação , Proteína Quinase C-épsilon , Ratos , Canais de Cátion TRPV/metabolismo
11.
J Neuroinflammation ; 18(1): 191, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465362

RESUMO

The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.


Assuntos
Asma/metabolismo , Corpo Carotídeo/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Alérgenos , Animais , Corpo Carotídeo/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley
12.
J Chem Inf Model ; 61(2): 621-630, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33491455

RESUMO

In the world plagued by the emergence of new diseases, it is essential that we accelerate the drug design process to develop new therapeutics against them. In recent years, deep learning-based methods have shown some success in ligand-based drug design. Yet, these methods face the problem of data scarcity while designing drugs against a novel target. In this work, the potential of deep learning and molecular modeling approaches was leveraged to develop a drug design pipeline, which can be useful for cases where there is limited or no availability of target-specific ligand datasets. Inhibitors of the homologues of the target protein were screened at the active site of the target protein to create an initial target-specific dataset. Transfer learning was used to learn the features of the target-specific dataset. A deep predictive model was utilized to predict the docking scores of newly designed molecules. Both these models were combined using reinforcement learning to design new chemical entities with an optimized docking score. The pipeline was validated by designing inhibitors against the human JAK2 protein, where none of the existing JAK2 inhibitors were used for training. The ability of the method to reproduce existing molecules from the validation dataset and design molecules with better binding energy demonstrates the potential of the proposed approach.


Assuntos
Aprendizado Profundo , Desenho de Fármacos , Domínio Catalítico , Humanos , Ligantes , Proteínas
13.
Biochem J ; 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33241842

RESUMO

Topoisomerase III (TopoIII) along with RecQ helicases are required for the resolution of abnormal DNA structures that result from the stalling of replication forks. Sequence analyses have identified a putative TopoIII in the Plasmodium falciparum genome (PfTopoIII). PfTopoIII shows dual nuclear and mitochondrial localization. The expression and association of PfTopoIII with mtDNA is tightly linked to the asexual replication of the parasite. In this study, we observed that PfTopoIII physically interacts with PfBlm and PfWrn. Sequence alignment and domain analyses have revealed that it contains a unique positively charged region, spanning 85 amino acids, within domain II. A molecular dynamics simulation study revealed that this unstructured domain communicates with DNA and attains a thermodynamically stable state upon DNA binding. Here, we found that the association between PfTopoIII and the mitochondrial genome is negatively affected by the absence of the charged domain. Our study shows that PfTOPOIII can completely rescue the slow growth phenotype of the ΔtopoIII strain in Saccharomyces cerevisiae, but neither PfY421FtopoIII (catalytic-active site mutant) nor Pf(Δ259-337)topoIII (charged region deletion mutant) can functionally complement ScTOPOIII. Hydroxyurea (HU) led to stalling of the replication fork during the S phase, caused moderate toxicity to the growth of P. falciparum, and was associated with concomitant transcriptional upregulation of PfTOPOIII. In addition, ectopic expression of PfTOPOIII reversed HU-induced toxicity. Interestingly, the expression of Pf(Δ259-337)topoIII failed to reverse HU-mediated toxicity. Taken together, our results establish the importance of TopoIII during Plasmodium replication and emphasize the essential requirement of the charged domain in PfTopoIII function.

14.
Adv Exp Med Biol ; 1289: 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767266

RESUMO

This article addresses the disparity in the transduction pathways for hypoxic and hypercapnic stimuli in carotid body glomus cells. We investigated and reviewed the experimental evidence showing that the response to hypoxia, but not to hypercapnia, is mediated by 1,4,5-inositol triphosphate receptors (IP3R/s) regulating the intracellular calcium content [Ca2+]c in glomus cells. The rationale was based on the past observations that inhibition of oxidative phosphorylation leads to the explicit inhibition of the hypoxic chemoreflex. [Ca2+]c changes were measured using cellular Ca2+-sensitive fluorescent probes, and carotid sinus nerve (CSN) sensory discharge was recorded with bipolar electrodes in in vitro perfused-superfused rat carotid body preparations. The cell-permeant, 2-amino-ethoxy-diphenyl-borate (2-APB; 100 µM) and curcumin (50 µM) were used as the inhibitors of IP3R/s. These agents suppressed the [Ca2+]c, and CSN discharge increases in hypoxia but not in hypercapnia, leading to the conclusion that only the hypoxic effects were mediated via modulation of IP3R/s. The ATP-induced Ca2+ release from intracellular stores in a Ca2+-free medium was blocked with 2-APB, supporting this conclusion.


Assuntos
Corpo Carotídeo , Animais , Células Quimiorreceptoras , Hipercapnia , Hipóxia , Receptores de Inositol 1,4,5-Trifosfato , Ratos
15.
Proc Natl Acad Sci U S A ; 115(17): E4071-E4080, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632172

RESUMO

Hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthetic pathway, catalyzes the head-to-tail condensation of four molecules of porphobilinogen (PBG) to form the linear tetrapyrrole 1-hydroxymethylbilane (HMB). Mutations in human HMBS (hHMBS) cause acute intermittent porphyria (AIP), an autosomal-dominant disorder characterized by life-threatening neurovisceral attacks. Although the 3D structure of hHMBS has been reported, the mechanism of the stepwise polymerization of four PBG molecules to form HMB remains unknown. Moreover, the specific roles of each of the critical active-site residues in the stepwise enzymatic mechanism and the dynamic behavior of hHMBS during catalysis have not been investigated. Here, we report atomistic studies of HMB stepwise synthesis by using molecular dynamics (MD) simulations, mutagenesis, and in vitro expression analyses. These studies revealed that the hHMBS active-site loop movement and cofactor turn created space for the elongating pyrrole chain. Twenty-seven residues around the active site and water molecules interacted to stabilize the large, negatively charged, elongating polypyrrole. Mutagenesis of these active-site residues altered the binding site, hindered cofactor binding, decreased catalysis, impaired ligand exit, and/or destabilized the enzyme. Based on intermediate stages of chain elongation, R26 and R167 were the strongest candidates for proton transfer to deaminate the incoming PBG molecules. Unbiased random acceleration MD simulations identified R167 as a gatekeeper and facilitator of HMB egress through the space between the enzyme's domains and the active-site loop. These studies identified the specific active-site residues involved in each step of pyrrole elongation, thereby providing the molecular bases of the active-site mutations causing AIP.


Assuntos
Hidroximetilbilano Sintase/química , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Porfiria Aguda Intermitente/enzimologia , Pirróis/química , Substituição de Aminoácidos , Humanos , Hidroximetilbilano Sintase/genética , Hidroximetilbilano Sintase/metabolismo , Porfiria Aguda Intermitente/genética , Estrutura Secundária de Proteína , Pirróis/metabolismo
16.
Phys Chem Chem Phys ; 21(15): 7932-7940, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30918925

RESUMO

Hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthesis pathway, catalyzes the formation of 1-hydroxymethylbilane (HMB) by a stepwise polymerization of four molecules of porphobilinogen (PBG) using the dipyrromethane (DPM) cofactor. The mechanism by which HMBS polymerizes four units of PBG has not been elucidated to date. In vitro and in silico studies on HMBS have suggested certain residues with catalytic importance, but their specific role in the catalysis is unclear. To understand the catalytic mechanism of HMBS, quantum mechanical (QM) calculations were performed on model systems obtained from the active site of the human HMBS enzyme. The addition of one molecule of PBG to the DPM cofactor is carried out in four steps: (1) protonation of the substrate, PBG; (2) deamination of PBG; (3) electrophilic addition of the deaminated substrate to the terminal pyrrole ring of the enzyme-bound DPM cofactor and (4) deprotonation of the carbon atom at the α-position of the second ring of DPM. Based on the energy profiles from the QM calculations on cluster models, R26 is proposed to be the best suitable proton donor to the PBG moiety, which aids in the deamination of the substrate. During the electrophilic addition step, the intermediate formed is stabilized by the carboxylate side chain of the D99 residue. In the final deprotonation step, an extra proton from the second ring of DPM is transferred to R26 via the carboxylate side chain of D99, thus completing one cycle of the catalytic mechanism. The residues in the cluster model seem to play an important role in obtaining accurate energy barriers. All the stationary points along the reaction pathway have been characterized using QM calculations. The rate limiting step for the complete mechanism is found to be the deamination of the PBG moiety. The results of this study provide a detailed understanding of the catalytic mechanism and would help design future studies aimed at modulating the activity of HMBS.


Assuntos
Hidroximetilbilano Sintase/química , Hidroximetilbilano Sintase/metabolismo , Modelos Químicos , Catálise , Humanos
17.
J Physiol ; 596(15): 3149-3169, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29159869

RESUMO

KEY POINTS: Activity-dependent plasticity can be induced in carotid body (CB) chemosensory afferents without chronic intermittent hypoxia (CIH) preconditioning by acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc). Several properties of this acute plasticity are shared with CIH-dependent sensory long-term facilitation (LTF) in that induction is dependent on 5-HT, angiotensin II, protein kinase C and reactive oxygen species. Several properties differ from CIH-dependent sensory LTF; H2 O2 appears to play no part in induction, whereas maintenance requires purinergic P2X2/3 receptor activation and is dependent on transient receptor potential vanilloid type 1 (TRPV1) receptor sensitization. Because P2X2/3 and TRPV1 receptors are located in carotid sinus nerve (CSN) terminals but not presynaptic glomus cells, a primary site of the acute AIH-Hc induced sensory LTF appears to be postsynaptic. Our results obtained in vivo suggest a role for TRPV1-dependent CB activity in acute sympathetic LTF. We propose that P2X-TRPV1-receptor-dependent sensory LTF may constitute an important early mechanism linking sleep apnoea with hypertension and/or cardiovascular disease. ABSTRACT: Apnoeas constitute an acute existential threat to neonates and adults. In large part, this threat is detected by the carotid bodies, which are the primary peripheral chemoreceptors, and is combatted by arousal and acute cardiorespiratory responses, including increased sympathetic output. Similar responses occur with repeated apnoeas but they continue beyond the last apnoea and can persist for hours [i.e. ventilatory and sympathetic long-term facilitation (LTF)]. These long-term effects may be adaptive during acute episodic apnoea, although they may prolong hypertension causing chronic cardiovascular impairment. We report a novel mechanism of acute carotid body (CB) plasticity (sensory LTF) induced by repeated apnoea-like stimuli [i.e. acute intermittent hypoxia coincident with bouts of hypercapnia (AIH-Hc)]. This plasticity did not require chronic intermittent hypoxia preconditioning, was dependent on P2X receptors and protein kinase C, and involved heat-sensitive transient receptor potential vanilloid type 1 (TRPV1) receptors. Reactive oxygen species (O2 ·¯) were involved in initiating plasticity only; no evidence was found for H2 O2 involvement. Angiotensin II and 5-HT receptor antagonists, losartan and ketanserin, severely reduced CB responses to individual hypoxic-hypercapnic challenges and prevented the induction of sensory LTF but, if applied after AIH-Hc, failed to reduce plasticity-associated activity. Conversely, TRPV1 receptor antagonism had no effect on responses to individual hypoxic-hypercapnic challenges but reduced plasticity-associated activity by ∼50%. Further, TRPV1 receptor antagonism in vivo reduced sympathetic LTF caused by AIH-Hc, although only if the CBs were functional. These data demonstrate a new mechanism of CB plasticity and suggest P2X-TRPV1-dependent sensory LTF as a novel target for pharmacological intervention in some forms of neurogenic hypertension associated with recurrent apnoeas.


Assuntos
Corpo Carotídeo/fisiologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Receptores Purinérgicos P2X/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Masculino , Ratos Sprague-Dawley
18.
Neurobiol Dis ; 119: 172-189, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30121230

RESUMO

Thermal hyperpnea, a pattern of breathing during hyperthermia that is characterized by an increase in tidal volume as well as breathing frequency, is known to lead to respiratory alkalosis. Thermal hyperpnea-induced respiratory alkalosis is linked to febrile seizures (FS). The heat-sensitive transient receptor potential vanilloid-1 (TRPV1) receptors are localized in, and implicated in the heat sensitivity of peripheral and central structures involved in the respiratory response to hyperthermia. We, therefore, hypothesize that TRPV1 activation increases susceptibility to experimental FS (EFS) in immature rats due to an exacerbated thermal hyperpnea. We found that peripheral, but not central TRPV1 activation had pro-convulsant effects. These pro-convulsant effects were associated with an increased rate of expired CO2 due to an exaggerated ventilatory response to hyperthermia. The TRPV1 antagonist, AMG-9810, and TRPV1 deletion abolished the pro-convulsant effects, while exposure to 5% CO2, bilateral vagotomy and DREADD (designer receptor exclusively activated by designer drugs)-mediated inhibition of TRPV1-containing cells in the vagal nodose ganglia significantly attenuated these effects. These findings suggest that vagal TRPV1-driven thermal hyperpnea likely increases susceptibility to FS in immature rodents. This identifies a novel peripheral anatomical and molecular target that should be considered when developing therapeutics for FS.


Assuntos
Febre/metabolismo , Convulsões Febris/metabolismo , Canais de Cátion TRPV/metabolismo , Nervo Vago/metabolismo , Fatores Etários , Animais , Suscetibilidade a Doenças , Feminino , Febre/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Convulsões Febris/fisiopatologia , Nervo Vago/fisiopatologia
19.
J Environ Manage ; 206: 1211-1223, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988063

RESUMO

Due to urbanization and population growth, the degradation of natural forests and associated biodiversity are now widely recognized as a global environmental concern. Hence, there is an urgent need for rapid assessment and monitoring of biodiversity on priority using state-of-art tools and technologies. The main purpose of this research article is to develop and implement a new methodological approach to characterize biological diversity using spatial model developed during the study viz. Spatial Biodiversity Model (SBM). The developed model is scale, resolution and location independent solution for spatial biodiversity richness modelling. The platform-independent computation model is based on parallel computation. The biodiversity model based on open-source software has been implemented on R statistical computing platform. It provides information on high disturbance and high biological richness areas through different landscape indices and site specific information (e.g. forest fragmentation (FR), disturbance index (DI) etc.). The model has been developed based on the case study of Indian landscape; however it can be implemented in any part of the world. As a case study, SBM has been tested for Uttarakhand state in India. Inputs for landscape ecology are derived through multi-criteria decision making (MCDM) techniques in an interactive command line environment. MCDM with sensitivity analysis in spatial domain has been carried out to illustrate the model stability and robustness. Furthermore, spatial regression analysis has been made for the validation of the output.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Índia , Computação Matemática
20.
J Physiol ; 595(21): 6653-6672, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952155

RESUMO

KEY POINTS: Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. ABSTRACT: Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and mdx mice. Diaphragm force was severely depressed in mdx mice, with evidence of fibre remodelling and damage. Diaphragm EMG responses to chemoactivation were enhanced in mdx mice. We conclude that there is evidence of chronic hypoventilation in young mdx mice. Diaphragm dysfunction confers mechanical deficiency in mdx resulting in impaired capacity to generate normal tidal volume at rest and decreased absolute ventilation during chemoactivation. Enhanced mdx diaphragm EMG responsiveness suggests compensatory neuroplasticity facilitating respiratory motor output, which may extend to accessory muscles of breathing. Our results may have relevance to emerging treatments for human DMD aiming to preserve ventilatory capacity.


Assuntos
Corpo Carotídeo/fisiopatologia , Diafragma/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Respiração , Animais , Dióxido de Carbono/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Oxigênio/metabolismo , Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA