RESUMO
BACKGROUND: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are now accepted as suitable alternatives to antibiotics in the control of animal infections and improving animal production. Lactic acid bacteria (LAB) with remarkable functional properties have been evaluated in different studies as possible probiotic candidates. The purpose of this study was to isolate, characterize and assess the potentials of LAB from poultry gastrointestinal tract as potential poultry probiotics. RESULTS: Potential LAB probiotics were isolated from broilers, characterized and evaluated for probiotic properties including antagonistic activity (against Escherichia coli, E. coli O157: H7, Enterococcus faecalis, Salmonella Typhimurium, S. Enteritidis and Listeria monocytogenes), survivability in simulated gastric juice, tolerance to phenol and bile salts, adhesion to ileum epithelial cells, auto and co-aggregation, hydrophobicity, α-glucosidase inhibitory activity, and antibiotic susceptibility tests. Most promising LAB strains with excellent probiotic potentials were identified by API 50 CHL and 16S rRNA sequencing as Lactobacillus reuteri I2, Pediococcus acidilactici I5, P. acidilactici I8, P. acidilactici c3, P. pentosaceus I13, and Enterococcus faecium c14. They inhibited all the pathogens tested with zones of inhibition ranging from 12.5 ± 0.71 to 20 ± 0 mm, and competitively excluded (P < 0.05) the pathogens examined while adhering to ileum epithelial cells with viable counts of 3.0 to 6.0 Log CFU/ml. The selected LAB strains also showed significant (P < 0.005) auto and co-aggregation abilities with α-glucosidase inhibitory activity ranging from 12.5 to 92.0%. The antibiotic susceptibility test showed 100.00% resistance of the LAB strains to oxacillin, with multiple antibiotic resistance indices above 0.5. CONCLUSION: The selected LAB strains are ideal probiotic candidates which can be applied in the field for the improvement of poultry performance and control of pathogens in poultry, hence curtailing further transmission to humans.
Assuntos
Lactobacillales/classificação , Oxacilina/farmacologia , Aves Domésticas/microbiologia , Análise de Sequência de DNA/métodos , Animais , Galinhas , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Suco Gástrico/fisiologia , Trato Gastrointestinal/microbiologia , Lactobacillales/efeitos dos fármacos , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Viabilidade Microbiana , Probióticos , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: The reduction of antimicrobial usage in food-producing animals necessitates the intense search for novel alternatives, including new probiotic strains with more effective properties in improving growth performance and curtailing diseases in animals. OBJECTIVE: This study evaluated the effects of novel mono- and multi-strain probiotics on the growth performance, intestinal microbiota and haemato-biochemical parameters of broilers. METHODS: A total of 160 one-day-old Cobb 500 broilers were divided into eight treatment groups with two replicates consisting of (1) basal diet (negative control), (2) basal diet with antibiotic, colistin sulphate, (3) basal diet with commercial probiotic, PROMAX® (positive control), (4) basal diet with Pediococcus acidilactici I5, (5) basal diet with P. pentosaceus I13, (6) basal diet with Enterococcus faecium C14, (7) basal diet with Lactobacillus plantarum C16 and (8) basal diet with the combination of all the four probiotic strains. Birds were kept for 35 days and through oral gavage, 1 ml of 108 study probiotic strains administered on days 3-6, 14 and 18. RESULTS: Supplementation with P. pentosaceus I13, L. plantarum C16 or multi-strain probiotics significantly (p < 0.05) improved the body weight gain and feed conversion ratio with decrease in feed intake and intestinal Enterobacteria counts. There was a significant (p < 0.05) increase in haemoglobin, mean corpuscular volume, total white blood cells, platelets counts and a lowered (p < 0.05) total cholesterol and glucose levels in multi-strains probiotic supplemented birds. CONCLUSION: The supplementation with novel multi-strain probiotics improved growth, intestinal health and haemato-biochemical parameters in broilers and could be used as suitable antibiotic alternatives.
Assuntos
Microbioma Gastrointestinal , Probióticos , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Galinhas , Suplementos Nutricionais , Probióticos/farmacologiaRESUMO
Lactic acid bacteria are the well acknowledged probiotics that can cure a variety of diseases. In this study, we observed the in vivo potentials of Pediococcus to treat hyperglycemia, hypercholesterolemia and gastrointestinal infections. A total of 77 Lactobacillus were isolated from the milk of 10 cows and 10 goats, four of those strains inhibited both carbohydrates-hydrolyzing enzymes, α-glucosidase, and α-amylase. They all showed antagonistic effects on pathogenic E. coli and S. Typhimurium which were confirmed by performing pathogen challenge test and visualizing on Electron microscopy. 16S rRNA gene sequence identified that all four strains belong to Pediococcus genus which were further distinguished as Pediococcus acidilactici by pheS gene sequence. Whole genome sequence analysis revealed their non-pathogenic properties for human and the presence of probiotic genes responsible for stress resistance, immunomodulation, adhesion, metal and drug resistance. In vivo trial with diabetes-induced mice ascertained that all Pediococcus acidilactici had significant potentials to reduce elevated glucose and low-density lipoprotein level in blood. Interestingly, two out of four strains were significantly more effective (p < 0.0001 each) than metformin in reducing the blood glucose level. This in vivo study demonstrated that Pediococcus acidilactici might be a promising probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections.
Assuntos
Doenças Transmissíveis , Gastroenteropatias , Hipercolesterolemia , Hiperglicemia , Pediococcus acidilactici , Probióticos , Feminino , Humanos , Bovinos , Camundongos , Animais , Pediococcus acidilactici/genética , RNA Ribossômico 16S/genética , Escherichia coli , Genômica , Hiperglicemia/prevenção & controle , Probióticos/farmacologia , Probióticos/uso terapêutico , Pediococcus/genética , CabrasRESUMO
BACKGROUND AND AIM: The use of antibiotic growth promoters (AGPs) in the poultry industry has raised concern because of their potential harm to human health. Emerging evidence suggests that probiotics are a safer substitute, although little research has explored this in Bangladesh. We recently isolated local bacterial strains with probiotic properties. We aimed to determine their impact on the growth, hematobiochemical parameters, and production costs of broiler chicks relative to that of a commercial probiotic (CP) and AGP. MATERIALS AND METHODS: Day-old male broiler chicks (Cobb 500, n=63) were divided equally into three experimental groups (three replicates per group and seven chicks per replicate). First group was fed a basal diet supplemented with the AGP, ciprofloxacin (CTL group), second group was fed a basal diet supplemented with the CP, Protexin® (CP group), and the third group was fed a basal diet supplemented with our isolated bacterial strains (study probiotic [SP] group) for 36 days. Body weight was recorded daily, and relative growth rate (RGR), feed conversion ratio (FCR), and organ weights and carcass yields were calculated at the study's end. Blood obtained on day 36 was used to determine the number of red blood cell (RBC) and white blood cells (WBCs), hemoglobin (Hb) concentration, packed cell volume, erythrocyte sedimentation rate, as well as levels of serum glucose, total and high-density lipoprotein (HDL) cholesterol, and triglycerides (TGs). Total production costs were estimated by summing the variable and fixed costs. RESULTS: Chicks in both the CP and SP groups experienced significant decreases in blood glucose levels and significant increases in BW, RGR, FCR, levels of RBC and WBC, Hb concentration, and packed cell volume compared with those in the CTL group (p<0.05 for all). Our data suggested a numerical reduction (p>0.05) in levels of total cholesterol, TGs, and HDL in the SP and CP groups when compared to the CTL group. In addition, both CP and SP treatments resulted in significant (p<0.05) gains in net profit compared with the treatment given to the CTL group. CONCLUSION: Administration of probiotics, either from a commercialized or local source, led to greater improvements in growth, hematological parameters, and net profits of broiler chicks when compared with that of an AGP. This suggests that they are suitable alternatives to the AGPs used in poultry feed and that our isolated strains, in particular, are an ideal option for farmers in Bangladesh.
RESUMO
Pasteurella multocida causes fowl cholera, a highly contagious poultry disease of global concern, causing significant ecological and economic challenges to the poultry industry each year. This study evaluated the effects of novel multi-strain probiotics consisting of Lactobacillus plantarum, L. fermentum, Pediococcus acidilactici, Enterococcus faecium and Saccharomyces cerevisiae on growth performance, intestinal microbiota, haemato-biochemical parameters and anti-inflammatory properties on broilers experimentally challenged with P. multocida. A total of 120 birds were fed with a basal diet supplemented with probiotics (108 CFU/kg) and then orally challenged with 108 CFU/mL of P. multocida. Probiotics supplementation significantly (P < 0.05) improved growth performance and feed efficiency as well as reducing (P < 0.05) the population of intestinal P. multocida, enterobacteria, and mortality. Haemato-biochemical parameters including total cholesterol, white blood cells (WBC), proteins, glucose, packed cell volume (PCV) and lymphocytes improved (P < 0.05) among probiotic fed birds when compared with the controls. Transcriptional profiles of anti-inflammatory genes including hypoxia inducible factor 1 alpha (HIF1A), tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) and prostaglandin E receptor 2 (PTGER2) in the intestinal mucosa were upregulated (P < 0.05) in probiotics fed birds. The dietary inclusion of the novel multi-strain probiotics improves growth performance, feed efficiency and intestinal health while attenuating inflammatory reaction, clinical signs and mortality associated with P. multocida infection in broilers.
Assuntos
Galinhas/microbiologia , Infecções por Pasteurella , Pasteurella multocida , Doenças das Aves Domésticas , Probióticos/farmacologia , Animais , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologiaRESUMO
Originating in December 2019 in China, SARS-CoV-2 has emerged as the deadliest pandemic in humankind's history. Along with direct contact and droplet contaminations, the possibility of infections through contaminated surfaces and fomites is investigating. This study aims to assess SARS-CoV-2 viral RNA's prevalence by real-time one-step reverse transcriptase PCR on banknotes circulating in Bangladesh. We also evaluated the persistence of the virus on banknotes spiked with SARS-CoV-2 positive diluted human nasopharyngeal samples. Among the 425 banknote samples collected from different entities, 7.29% (n = 31) were tested positive for targeted genes. Twenty-four positive representative samples were assessed for n gene fragments by conventional PCR and sequenced. All the samples that carry viral RNA belonged to the GR clade, the predominantly circulating clade in Bangladesh. In the stability test, the n gene was detected for up to 72 h on banknotes spiked with nasopharyngeal samples, and CT values increase significantly with time (p < 0.05). orf1b gene was observed to be less stable, especially on old banknotes, and usually went beyond detectable limit within 8 to 10 h. The stability of virus RNA well fitted by the Weibull model and concave curve for new banknotes and convex curve for old banknotes revealed. Handling banknotes is unavoidable; hence, these findings imply that proper hygiene practice is needed to limit SARS-CoV-2 transmission through banknotes.