RESUMO
BACKGROUND: The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation. The molecular and cellular features differentiating the two patterns are still unclear, and the role of inflammation during progressive disease is a subject of active debate. METHODS: We performed a comprehensive analysis of the intrathecal inflammation in two clinically distinct mouse models of MS: the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Microarray technology was first used to examine global gene expression changes in the spinal cord. Inflammation in the spinal cord was further assessed by immunohistochemical image analysis and flow cytometry. Levels of serum and cerebrospinal fluid (CSF) immunoglobulin (Ig) isotypes and chemokines were quantitated using Luminex Multiplex technology, whereas a capture ELISA was used to measure serum and CSF albumin levels. Finally, an intrathecal Ig synthesis index was established with the ratio of CSF and serum test results corrected as a ratio of their albumin concentrations. RESULTS: Microarray analysis identified an enrichment of B cell- and Ig-related genes upregulated in TMEV-IDD mice. We also demonstrated an increased level of intrathecal Ig synthesis as well as a marked infiltration of late differentiated B cells, including antibody secreting cells (ASC), in the spinal cord of TMEV-IDD, but not R-EAE mice. An intact blood-brain barrier in TMEV-IDD mice along with higher CSF levels of CXCL13, CXCL12, and CCL19 provides evidence for an intrathecal synthesis of chemokines mediating B cell localization to the central nervous system (CNS). CONCLUSIONS: Overall, these findings, showing increased concentrations of intrathecally produced Igs, substantial infiltration of ASC, and the presence of B cell supporting chemokines in the CNS of TMEV-IDD mice, but not R-EAE mice, suggest a potentially important role for Igs and ASC in the chronic progressive phase of demyelinating diseases.
Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Medula Espinal/imunologia , Theilovirus/imunologia , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Esclerose Múltipla/patologia , Medula Espinal/patologiaRESUMO
Teriflunomide is an oral therapy approved for the treatment of relapsing remitting multiple sclerosis (MS), showing both anti-inflammatory and antiviral properties. Currently, it is uncertain whether one or both of these properties may explain teriflunomide's beneficial effect in MS. Thus, to learn more about its mechanisms of action, we evaluated the effect of teriflunomide in the Theiler's encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model, which is both a viral infection and an excellent model of the progressive disability of MS. We assessed the effects of the treatment on central nervous system (CNS) viral load, intrathecal immune response, and progressive neurological disability in mice intracranially infected with TMEV. In the TMEV-IDD model, we showed that teriflunomide has both anti-inflammatory and antiviral properties, but there seemed to be no impact on disability progression and intrathecal antibody production. Notably, benefits in TMEV-IDD were mostly mediated by effects on various cytokines produced in the CNS. Perhaps the most interesting result of the study has been teriflunomide's antiviral activity in the CNS, indicating it may have a role as an antiviral prophylactic and therapeutic compound for CNS viral infections.
Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Infecções por Cardiovirus/tratamento farmacológico , Crotonatos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Toluidinas/farmacologia , Animais , Anticorpos Antivirais/biossíntese , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/virologia , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hidroxibutiratos , Injeções Intraperitoneais , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Nitrilas , Theilovirus/efeitos dos fármacos , Theilovirus/crescimento & desenvolvimento , Theilovirus/imunologia , Carga Viral/efeitos dos fármacosRESUMO
Lung cancer accounts for the highest number of cancer-related deaths in the USA, highlighting the need for better prevention and therapy. Activation of the Nrf2 pathway detoxifies harmful insults and reduces oxidative stress, thus preventing carcinogenesis in various preclinical models. However, constitutive activation of the Nrf2 pathway has been detected in numerous cancers, which confers a survival advantage to tumor cells and a poor prognosis. In our study, we compared the effects of two clinically relevant classes of Nrf2 activators, dimethyl fumarate (DMF) and the synthetic oleanane triterpenoids, CDDO-imidazolide (CDDO-Im) and CDDO-methyl ester (CDDO-Me) in RAW 264.7 mouse macrophage-like cells, in VC1 lung cancer cells and in the A/J model of lung cancer. Although the triterpenoids and DMF both activated the Nrf2 pathway, CDDO-Im and CDDO-Me were markedly more potent than DMF. All of these drugs reduced the production of reactive oxygen species and inhibited nitric oxide production in RAW264.7 cells, but the triterpenoids were 100 times more potent than DMF in these assays. Microarray analysis revealed that only 52 of 99 Nrf2-target genes were induced by all three compounds, and each drug regulated a unique subset of Nrf2 genes. These drugs also altered the expression of other genes important in lung cancer independent of Nrf2. Although all three compounds enhanced the phosphorylation of CREB, only DMF increased the phosphorylation of Akt. CDDO-Me, at either 12.5 or 50mg/kg of diet, was the most effective drug in our lung cancer mouse model. Specifically, CDDO-Me significantly reduced the average tumor number, size and burden compared with the control group (P < 0.05). Additionally, 52% of the tumors in the control group were high-grade tumors compared with only 14% in the CDDO-Me group. Though less potent, CDDO-Im had similar activity as CDDO-Me. In contrast, 61-63% of the tumors in the DMF groups (400-1200mg/kg diet) were high-grade tumors compared with 52% for the controls (P < 0.05). Additionally, DMF significantly increased the average number of tumors compared with the controls (P < 0.05). Thus, in contrast to the triterpenoids, which effectively reduced pathogenesis in A/J mice, DMF enhanced the severity of lung carcinogenesis in these mice. Collectively, these results suggest that although CDDO-Im, CDDO-Me and DMF all activate the Nrf2 pathway, they target distinct genes and signaling pathways, resulting in opposite effects for the prevention of experimental lung cancer.
Assuntos
Fumaratos/farmacologia , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Ácido Oleanólico/análogos & derivados , Animais , Antineoplásicos Fitogênicos/farmacologia , Fumarato de Dimetilo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Camundongos Knockout , Terapia de Alvo Molecular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Experimentais , Ácido Oleanólico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Two new analogues of CDDO-Imidazolide (CDDO-Im), namely 1-[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole ("CDDO-2P-Im") and 1-[2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-3-yl)-1H-imidazole ("CDDO-3P-Im") have been synthesized and tested for their potential use as chemopreventive drugs. At nanomolar concentrations, they were equipotent to CDDO-Im for inducing differentiation and apoptosis in U937 leukemia cells. As inflammation and oxidative stress contribute to carcinogenesis, we also assessed their cytoprotective potential. The new compounds suppressed inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophage-like cells and significantly elevated heme oxygenase-1 (HO-1) and quinone reductase (NQO1) mRNA and protein levels in various mouse tissues in vivo. Most importantly, pharmacokinetic studies performed in vitro in human plasma and in vivo showed that each new analogue was more stable than CDDO-Im. Much higher concentrations of the new derivatives were found in mouse liver, lung, pancreas and kidney after gavage in contrast to CDDO-Im. Because of their better bioavailability and their excellent anti-inflammatory profile in vitro, CDDO-2P-Im and CDDO-3P-Im were tested for prevention in a highly relevant mouse lung cancer model, in which A/J mice develop lung carcinomas after injection of vinyl carbamate, a potent carcinogen. CDDO-2P-Im and CDDO-3P-Im were as effective as CDDO-Im for reducing the size and the severity of the lung tumors.
Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Imidazóis/farmacologia , Neoplasias/prevenção & controle , Ácido Oleanólico/análogos & derivados , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células U937RESUMO
Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1ß-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.
Assuntos
Fibrose Cística , Criança , Lactente , Humanos , Camundongos , Animais , Fibrose Cística/complicações , Regulador de Condutância Transmembrana em Fibrose Cística , Propionatos , Bacteroides/genética , Células CACO-2 , Inflamação/complicações , Modelos Animais de Doenças , Disbiose/complicações , Escherichia coliRESUMO
Novel drugs and drug combinations are needed for the chemoprevention and treatment of cancer. We show that the histone deacetylase inhibitor vorinostat [suberoylanilide hydroxamic acid (SAHA)] and the methyl ester or ethyl amide derivatives of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me and CDDO-Ea, respectively) cooperated to inhibit the de novo synthesis of nitric oxide in RAW 264.7 macrophage-like cells and in primary mouse peritoneal macrophages. Additionally, SAHA enhanced the ability of synthetic triterpenoids to delay formation of estrogen receptor-negative mammary tumors in MMTV-polyoma middle T (PyMT) mice. CDDO-Me (50 mg/kg diet) and SAHA (250 mg/kg diet) each significantly delayed the initial development of tumors by 4 (P < 0.001) and 2 (P < 0.05) weeks, respectively, compared with the control group in the time required to reach 50% tumor incidence. CDDO-Ea (400 mg/kg diet), as a single agent, did not delay tumor development. The combination of either triterpenoid with SAHA was significantly more potent than the individual drugs for delaying tumor development, with a 7 week (P < 0.001) delay before 50% tumor incidence was reached. SAHA, alone and in combination with CDDO-Me, also significantly (P < 0.05) inhibited the infiltration of tumor-associated macrophages into the mammary glands of PyMT mice and levels of the chemokine macrophage colony-stimulating factor in primary PyMT tumor cells. In addition, SAHA and the synthetic triterpenoids cooperated to suppress secreted levels of the pro-angiogenic factor matrix metalloproteinase-9. Similar results were observed in mouse models of pancreatic and lung cancer. At concentrations that were anti-inflammatory, SAHA had no effect on histone acetylation. These studies suggest that both SAHA and triterpenoids effectively delay tumorigenesis, thereby demonstrating a promising, novel drug combination for chemoprevention.
Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Neoplasias Mamárias Experimentais/prevenção & controle , Triterpenos/farmacologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Quimioterapia Combinada , Ensaio de Imunoadsorção Enzimática , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Camundongos , Triterpenos/administração & dosagem , VorinostatRESUMO
Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known. Here, using phylogenomics of bacterial isolate genomes and analysis of infant and adult fecal metagenomes, we show that the contact-dependent type VI secretion system (T6SS) is repeatedly lost from the genomes of Bacteroides fragilis in adults compare to infants. Although this result implies a significant fitness cost to the T6SS, but we could not identify in vitro conditions under which such a cost manifests. Strikingly, however, experiments in mice illustrated that the B. fragilis T6SS can be favored or disfavored in the gut environment, depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use a variety of ecological modeling techniques to explore the possible local community structuring conditions that could underlie the results of our larger scale phylogenomic and mouse gut experimental approaches. The models illustrate robustly that the pattern of local community structuring in space can modulate the extent of interactions between T6SS-producing, sensitive, and resistant bacteria, which in turn control the balance of fitness costs and benefits of performing contact-dependent antagonistic behavior. Taken together, our genomic analyses, in vivo studies, and ecological theory point toward new integrative models for interrogating the evolutionary dynamics of type VI secretion and other predominant modes of antagonistic interaction in diverse microbiomes.
RESUMO
Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut. This result implies a fitness cost to the T6SS, but we could not identify laboratory conditions under which such a cost manifests. Strikingly, experiments in mice illustrate that the T6SS can be favoured or disfavoured in the gut depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use ecological modelling to explore the conditions that could underlie these results and find that community spatial structure modulates interaction patterns among bacteria, thereby modulating the costs and benefits of T6SS activity. Our findings point towards new integrative models for interrogating the evolutionary dynamics of type VI secretion and other modes of antagonistic interaction in microbiomes.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Proteínas de Bactérias/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Dinâmica PopulacionalRESUMO
PURPOSE: To test whether the triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and the rexinoid LG100268 (268) prevent the formation of estrogen receptor (ER)-negative mammary tumors or either arrest the growth or cause regression of established tumors in MMTV-neu mice. EXPERIMENTAL DESIGN: For prevention, mice were fed control diet, CDDO-Me (60 mg/kg diet), 268 (20 mg/kg diet), or the combination for 45 weeks. For treatment, mice with established tumors at least 4 mm in diameter were fed control diet, CDDO-Me (100 mg/kg diet), 268 (60 mg/kg diet), or the combination for 4 weeks. RESULTS: CDDO-Me and 268 significantly delayed the development of ER-negative tumors, with a 14- and 24-week delay, respectively, compared with the control group for the time required to reach 50% tumor incidence. The combination of CDDO-Me and 268 was significantly more potent than the individual drugs, as only one tumor was found in the combination group, after 45 weeks on diet, at which time all control animals had tumors. Treating established tumors with CDDO-Me arrested the growth of 86% of the tumors, and 268 induced tumor regression in 85% of tumors. CDDO-Me and 268 target different signaling pathways and cell types. CDDO-Me inhibited constitutive STAT3 phosphorylation and the degradation of IKBalpha in ER-negative breast cancer cells, whereas 268 blocked IKBalpha degradation and the release of interleukin-6 in RAW264.7 macrophage-like cells, inhibited the ability of endothelial cells to organize into networks, and blocked angiogenesis in vivo. CONCLUSIONS: CDDO-Me and 268 are useful as individual drugs to prevent ER-negative mammary tumorigenesis and to treat established tumors. They synergize when used in combination for prevention.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Ácidos Nicotínicos/farmacologia , Ácido Oleanólico/análogos & derivados , Tetra-Hidronaftalenos/farmacologia , Administração Oral , Animais , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/tratamento farmacológico , Ácido Oleanólico/farmacologia , Receptor ErbB-2/genética , Receptores de Estrogênio/biossínteseRESUMO
We report the first use of new synthetic triterpenoids to prevent lung cancer in experimental animals. Female A/J mice were treated with the mutagenic carcinogen vinyl carbamate, which induces adenocarcinoma of the lung in all animals within 16 weeks. If mice were fed either the methyl ester or the ethyl amide derivative of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-ME and CDDO-EA, respectively), beginning 1 week after dosing with carcinogen, the number, size, and severity of lung carcinomas were markedly reduced. The mechanisms of action of CDDO-ME and CDDO-EA that are germane to these in vivo findings are the following results shown here in cell culture: (a) suppression of the ability of IFN-gamma to induce de novo formation of nitric oxide synthase in a macrophage-like cell line RAW264.7, (b) induction of heme oxygenase-1 in these RAW cells, and (c) suppression of phosphorylation of the transcription factor signal transducers and activators of transcription 3 as well as induction of apoptosis in human lung cancer cell lines.
Assuntos
Adenocarcinoma/prevenção & controle , Anticarcinógenos/farmacologia , Neoplasias Pulmonares/prevenção & controle , Ácido Oleanólico/análogos & derivados , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Anticarcinógenos/sangue , Anticarcinógenos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos A , Ácido Oleanólico/sangue , Ácido Oleanólico/farmacocinética , Ácido Oleanólico/farmacologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Uretana/análogos & derivadosRESUMO
Female A/J mice injected with the carcinogen vinyl carbamate develop atypical adenomatous hyperplasias in lungs 4 weeks after injection with the carcinogen. The number and severity of tumors then increase over time, making these mice a useful model for evaluating potential chemopreventive agents. The rexinoid LG100268 (LG268), a selective ligand for the retinoid X receptor, and the methyl amide of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) both significantly reduced the number, size, and severity of the histopathology of lung tumors in female A/J mice when fed in diet for 14 to 20 weeks. The total tumor burden was 85% to 87% lower in mice fed LG268 and CDDO-MA than in controls, and the percentage of high-grade tumors decreased from 59% in the controls to 25% or 30% with CDDO-MA and LG268. Erlotinib, which is used to treat lung cancer patients and is an inhibitor of the epidermal growth factor receptor, was less effective in this model. Immunohistochemical staining of geminin, a marker of cell cycle progression, was higher in lung sections from control mice than in mice treated with LG268. Because rexinoids and triterpenoids signal through different biological pathways, they should be tested in combination for the prevention of lung cancer.
Assuntos
Anticarcinógenos/uso terapêutico , Neoplasias Pulmonares/prevenção & controle , Pulmão/efeitos dos fármacos , Ácidos Nicotínicos/uso terapêutico , Ácido Oleanólico/análogos & derivados , Quinazolinas/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Animais , Linhagem Celular Tumoral , Cloridrato de Erlotinib , Feminino , Neoplasias Pulmonares/patologia , Camundongos , Ácido Oleanólico/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Objective: We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods: We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results: A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions: A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence: This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.
Assuntos
Doenças Desmielinizantes/líquido cefalorraquidiano , Doenças Desmielinizantes/diagnóstico , Mielite/líquido cefalorraquidiano , Mielite/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminas/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Quimiocina CXCL13/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Doenças Desmielinizantes/complicações , Encefalite/líquido cefalorraquidiano , Encefalite/complicações , Encefalite/diagnóstico , Feminino , Humanos , Imunoglobulinas/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Mielite/complicações , Adulto JovemRESUMO
Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease.
Assuntos
Sistema Nervoso Central/imunologia , Inflamação/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Theilovirus/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Feminino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/virologia , Imunoglobulina G/imunologia , Inflamação/metabolismo , Inflamação/virologia , Camundongos , Esclerose Múltipla/metabolismoRESUMO
Cerebrospinal fluid (CSF), a fluid found in the brain and the spinal cord, is of great importance to both basic and clinical science. The analysis of the CSF protein composition delivers crucial information in basic neuroscience research as well as neurological diseases. One caveat is that proteins measured in CSF may derive from both intrathecal synthesis and transudation from serum, and protein analysis of CSF can only determine the sum of these two components. To discriminate between protein transudation from the blood and intrathecally produced proteins in animal models as well as in humans, CSF protein profiling measurements using conventional protein analysis tools must include the calculation of the albumin CSF/serum quotient (Qalbumin), a marker of the integrity of the blood-brain interface (BBI), and the protein index (Qprotein/Qalbumin), an estimate of intrathecal protein synthesis. This protocol illustrates the entire procedure, from CSF and blood collection to quotients and indices calculations, for the quantitative measurement of intrathecal protein synthesis and BBI impairment in mouse models of neurological disorders.
Assuntos
Proteínas do Líquido Cefalorraquidiano/química , Proteínas do Líquido Cefalorraquidiano/metabolismo , Albuminas/líquido cefalorraquidiano , Albuminas/química , Albuminas/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Humanos , Camundongos , Albumina Sérica , Manejo de EspécimesRESUMO
PURPOSE: We evaluated the anti-inflammatory and growth-inhibitory properties of the novel rexinoid NRX194204 (4204) in vitro and then tested its ability to prevent and/or treat experimental lung and estrogen receptor (ER)-negative breast cancer in vivo. EXPERIMENTAL DESIGN: In cell culture studies, we measured the ability of 4204 to block the effects of lipopolysaccharide and induce apoptosis. For the lung cancer prevention studies, A/J mice were injected with the carcinogen vinyl carbamate and then fed 4204 (30-60 mg/kg diet) for 15 weeks, beginning 1 week after the administration of the carcinogen. For breast cancer prevention studies, mouse mammary tumor virus-neu mice were fed control diet or 4204 (20 mg/kg diet) for 50 weeks; for treatment, tumors at least 32 mm3 in size were allowed to form, and then mice were fed control diet or 4204 (60 mg/kg diet) for 4 weeks. RESULTS: Low nanomolar concentrations of 4204 blocked the ability of lipopolysaccharide and tumor necrosis factor-alpha to induce the release of nitric oxide and interleukin 6 and the degradation of IKBalpha in RAW264.7 macrophage-like cells. In the A/J mouse model of lung cancer, 4204 significantly (P < 0.05) reduced the number and size of tumors on the surface of the lungs and reduced the total tumor volume per slide by 64% to 81% compared with the control group. In mouse mammary tumor virus-neu mice, 4204 not only delayed the development of ER-negative mammary tumors in the prevention studies but also caused marked tumor regression (92%) or growth arrest (8%) in all of the mammary tumors when used therapeutically. CONCLUSIONS: The combined anti-inflammatory and anticarcinogenic actions of 4204 suggest that it is a promising new rexinoid that should be considered for future clinical trials.
Assuntos
Neoplasias da Mama/prevenção & controle , Ácidos Graxos Insaturados/farmacologia , Neoplasias Pulmonares/prevenção & controle , Receptores do Ácido Retinoico/metabolismo , Tetra-Hidronaftalenos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anticarcinógenos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Carcinógenos/química , Ácidos Graxos Insaturados/química , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Camundongos , Modelos Biológicos , Modelos Químicos , Receptores de Estrogênio/metabolismo , Tetra-Hidronaftalenos/químicaRESUMO
Betulinic acid (BA), a pentacyclic triterpene isolated from birch bark and other plants, selectively inhibits the growth of human cancer cell lines. However, the poor potency of BA hinders its clinical development, despite a lack of toxicity in animal studies even at high concentrations. Here, we describe six BA derivatives that are markedly more potent than BA for inhibiting inducible nitric oxide synthase, activating phase 2 cytoprotective enzymes, and inducing apoptosis in cancer cells and in Bax/Bak(-/-) fibroblasts, which lack two key proteins involved in the intrinsic, mitochondrial-dependent apoptotic pathway. Notably, adding a cyano-enone functionality in the A ring of BA enhanced its cytoprotective properties, but replacing the cyano group with a methoxycarbonyl strikingly increased potency in the apoptosis assays. Higher plasma and tissue levels were obtained with the new BA analogues, especially CBA-Im [1-(2-cyano-3-oxolupa-1,20(29)-dien-28-oyl)imidazole], compared with BA itself and at concentrations that were active in vitro. These results suggest that BA is a useful platform for drug development, and the enhanced potency and varied biological activities of CBA-Im make it a promising candidate for further chemoprevention or chemotherapeutic studies.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óxido Nítrico/biossíntese , Triterpenos Pentacíclicos , Triterpenos/sangue , Triterpenos/química , Proteína X Associada a bcl-2/metabolismo , Ácido BetulínicoRESUMO
Because PEGylated molecules exhibit different physicochemical properties from those of the parent molecules, PEGylated interferonß-1a (pegIFNß-1a) may be able to be used with retained bioactivity in Multiple Sclerosis (MS) patients who have previously developed neutralizing antibodies (NABs) to recombinant interferonß (rIFNß). Hence, the objective of the present study was to test whether pegIFNß-1a is less antigenic for NABs in vitro than rIFNß. Two in vitro assays were used to quantitate NABs in 115 sera obtained from MS patients included in the INSIGHT study: the cytopathic effect (CPE) assay, and the MxA protein induction assay. NABs cross-reactivity was assessed by comparing dilutions of serum with fixed doses of rIFNß-1a Avonex® and pegIFNß-1a Plegridy®. NABs were shown to cross-react in both assays. The y-intercept (c), the slope of the line of agreement (b), the Pearson coefficients as well as the Bland-Altman analysis, indicated that there is good level of agreement between NAB titers against the two IFNß-1a formulations, with both the CPE (câ¯=â¯0.1044⯱â¯0.1305; bâ¯=â¯0.8438⯱â¯0.06654; r2â¯=â¯0.587; bias index⯱â¯SDâ¯=â¯-0.01702⯱â¯0.6334), and the MxA protein induction (câ¯=â¯0.08246⯱â¯0.1229; bâ¯=â¯0.8878⯱â¯0.06613; r2â¯=â¯0.615; bias index⯱â¯SDâ¯=â¯-0.09965⯱â¯0.6467) assays. Until further in vivo evidence is established, clinicians should consider the current in vitro data demonstrating NAB cross-reactivity between pegIFNß-1a and rIFNß when discussing new treatment options with MS patients.
Assuntos
Anticorpos Neutralizantes/sangue , Interferon beta/imunologia , Esclerose Múltipla/sangue , Proteínas Recombinantes/imunologia , Células A549 , Bioensaio , Reações Cruzadas , Efeito Citopatogênico Viral , Vírus da Encefalomiocardite/imunologia , Humanos , Esclerose Múltipla/imunologia , Proteínas de Resistência a Myxovirus/biossíntese , Testes de Neutralização , PolietilenoglicóisRESUMO
PURPOSE: Excessive activity of the transcription factors known as signal transducers and activators of transcription (STAT) contributes to the development and progression of malignancy in many organs. It is, therefore, important to develop new drugs to control the STATs, particularly their phosphorylation state, which is required for their transcriptional activity. EXPERIMENTAL DESIGN: Myeloma and lung cancer cells were treated with the new synthetic triterpenoid CDDO-Imidazolide, and STAT phosphorylation and apoptosis were evaluated by immunoblotting and fluorescence-activated cell sorting analysis. RESULTS: We now report that CDDO-Imidazolide, previously shown to be a potent agent for control of inflammation, cell proliferation, and apoptosis, rapidly (within 30-60 minutes) and potently (at nanomolar levels) suppresses either constitutive or interleukin-6-induced STAT3 and STAT5 phosphorylation in human myeloma and lung cancer cells. Furthermore, in these cells, CDDO-Imidazolide also up-regulates critical inhibitors of STATs, such as suppressor of cytokine signaling-1 and SH2-containing phosphatase-1 (a tyrosine phosphatase). Moreover, gene array studies reported here show that CDDO-Imidazolide potently regulates the transcription of important genes that are targets of the STATs. CONCLUSIONS: Our new data thus show that CDDO-Imidazolide is a potent suppressor of STAT signaling and provide a further mechanistic basis for future clinical use of this agent to control inflammation or cell proliferation.
Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , Imidazóis/farmacologia , Neoplasias Pulmonares/metabolismo , Mieloma Múltiplo/metabolismo , Ácido Oleanólico/análogos & derivados , Fatores de Transcrição STAT/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Interleucina-6/metabolismo , Ácido Oleanólico/farmacologia , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição GênicaRESUMO
PURPOSE: We tested whether a selective estrogen receptor modulator (SERM) and a rexinoid are active for prevention and treatment in the mouse mammary tumor virus-neu mouse model of estrogen receptor-negative breast cancer. EXPERIMENTAL DESIGN: For prevention, mice were fed a powdered control diet, the SERM arzoxifene (Arz, 20 mg/kg diet), the rexinoid LG100268 (268, 30 mg/kg diet), or the combination for 60 weeks. In a second prevention study, mice were fed Arz (6 mg/kg diet), 268 (30 mg/kg diet), the combination of Arz and 268, the SERM acolbifene (Acol, 3 mg/kg diet), or the combination of Acol and 268 for 52 weeks. For the treatment studies, mice with tumors were fed combinations of a SERM and 268 for 4 weeks. RESULTS: The rexinoid 268 and the SERMs Arz and Acol, as individual drugs, delayed the development of estrogen receptor-negative tumors. Moreover, the combination of a SERM and 268 was strikingly synergistic, as no tumors developed in any mouse fed the combination of 268 and a SERM. Moreover, this drug combination also induced significant tumor regression when used therapeutically. These drugs did not inhibit transgene expression in vitro or in vivo, and the combination of Arz and 268 inhibited proliferation and induced apoptosis in the tumors. CONCLUSION: The combination of a rexinoid and SERM should be considered for future clinical trials.
Assuntos
Modelos Animais de Doenças , Neoplasias Mamárias Experimentais/prevenção & controle , Ácidos Nicotínicos/uso terapêutico , Piperidinas/uso terapêutico , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Tiofenos/uso terapêutico , Animais , Divisão Celular/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Taxa de SobrevidaRESUMO
The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its derivative 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are multifunctional molecules with potent antiproliferative, differentiating, and anti-inflammatory activities. At nanomolar concentrations, these agents rapidly increase the expression of the cytoprotective heme oxygenase-1 (HO-1) enzyme in vitro and in vivo. Transfection studies using a series of reporter constructs show that activation of the human HO-1 promoter by the triterpenoids requires an antioxidant response element (ARE), a cyclic AMP response element, and an E Box sequence. Inactivation of one of these response elements alone partially reduces HO-1 induction, but mutations in all three sequences entirely eliminate promoter activity in response to the triterpenoids. Treatment with CDDO-Im also elevates protein levels of Nrf2, a transcription factor previously shown to bind ARE sequences, and increases expression of a number of antioxidant and detoxification genes regulated by Nrf2. The triterpenoids also reduce the formation of reactive oxygen species in cells challenged with tert-butyl hydroperoxide, but this cytoprotective activity is absent in Nrf2 deficient cells. These studies are the first to investigate the induction of the HO-1 and Nrf2/ARE pathways by CDDO and CDDO-Im, and our results suggest that further in vivo studies are needed to explore the chemopreventive and chemotherapeutic potential of the triterpenoids.