Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 7729-7740, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670821

RESUMO

Tracking Saharan-Sahelian dust across the globe is essential to elucidate its effects on Earth's climate, radiation budget, hydrologic cycle, nutrient cycling, and also human health when it seasonally enters populated/industrialized regions of Africa, Europe, and North America. However, the elemental composition of mineral dust arising locally from construction activities and aeolian soil resuspension overlaps with African dust. Therefore, we derived a novel "isotope-resolved chemical mass balance" (IRCMB) method by employing radiogenic strontium, neodymium, and hafnium isotopes to accurately differentiate and quantitatively apportion collinear proximal and synoptic-scale crustal and anthropogenic mineral dust sources. IRCMB was applied to two air masses that transported African dust to Barbados and Texas to track particulate matter (PM) spikes at both locations. During Saharan-Sahelian intrusions, the radiogenic content of urban PM2.5 increased with respect to 87Sr/86Sr and 176Hf/177Hf but decreased in terms of 143Nd/144Nd, demonstrating the ability of these isotopes to sensitively track African dust intrusions even in complex metropolitan atmospheres. The principal aerosol strontium, neodymium, and hafnium end members were concrete dust and soil, soil and motor vehicles, and motor vehicles and North African dust, respectively. IRCMB separated and quantified local soil and distal crustal dust even when PM2.5 concentrations were low, opening a promising source apportionment avenue for urbanized/industrialized atmospheres.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Poeira/análise , Monitoramento Ambiental/métodos , Háfnio/análise , Humanos , Isótopos , Minerais , Neodímio/análise , Material Particulado/análise , Solo , Estrôncio , Texas
2.
Environ Sci Technol ; 55(5): 2869-2877, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587619

RESUMO

Atomic chlorine (Cl•) affects air quality and atmospheric oxidizing capacity. Nitryl chloride (ClNO2) - a common Cl• source-forms when chloride-containing aerosols react with dinitrogen pentoxide (N2O5). A recent study showed that saline lakebed (playa) dust is an inland source of particulate chloride (Cl-) that generates high ClNO2. However, the underlying physiochemical factors responsible for observed yields are poorly understood. To elucidate these controlling factors, we utilized single particle and bulk techniques to determine the chemical composition and mineralogy of playa sediment and dust samples from the southwest United States. Single particle analysis shows trace highly hygroscopic magnesium and calcium Cl-containing minerals are present and likely facilitate ClNO2 formation at low humidity. Single particle and mineralogical analysis detected playa sediment organic matter that hinders N2O5 uptake as well as 10 Å-clay minerals (e.g., Illite) that compete with water and chloride for N2O5. Finally, we show that the composition of the aerosol surface, rather than the bulk, is critical in ClNO2 formation. These findings underscore the importance of mixing state, competing reactions, and surface chemistry on N2O5 uptake and ClNO2 yield for playa dusts and, likely, other aerosol systems. Therefore, consideration of particle surface composition is necessary to improve ClNO2 and air quality modeling.


Assuntos
Poluição do Ar , Poeira , Aerossóis , Cloro , Carvão Mineral
3.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783680

RESUMO

The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

4.
Toxins (Basel) ; 12(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322328

RESUMO

Harmful algal blooms (HABs) are a rising health and environmental concern in the United States, particularly in South Florida. Skin contact and the ingestion of contaminated water or fish and other seafood have been proven to have severe toxicity to humans in some cases. However, the impact of aerosolized HAB toxins is poorly understood. In particular, knowledge regarding either the immediate or long-term effects of exposure to aerosolized cyanotoxins produced by freshwater blue-green algae does not exist. The aim of this study was to probe the toxicity of aerosolized cyanobacterial blooms using Drosophila melanogaster as an animal model. The exposure of aerosolized HABs at an early age leads to the most severe long-term impact on health and longevity among all age groups. Young groups and old males showed a strong acute response to HAB exposure. In addition, brain morphological analysis using fluorescence imaging reveals significant indications of brain degeneration in females exposed to aerosolized HABs in early or late stages. These results indicate that one-time exposure to aerosolized HAB particles causes a significant health risk, both immediately and in the long-term. Interestingly, age at the time of exposure plays an important role in the specific nature of the impact of aerosol HABs. As BMAA and microcystin have been found to be the significant toxins in cyanobacteria, the concentration of both toxins in the water and aerosols was examined. BMAA and microcystin are consistently detected in HAB waters, although their concentrations do not always correlate with the severity of the health impact, suggesting the potential contribution from additional toxins present in the aerosolized HAB. This study demonstrates, for the first time, the health risk of exposure to aerosolized HAB, and further highlights the critical need and importance of understanding the toxicity of aerosolized cyanobacteria HAB particles and determining the immediate and long-term health impacts of HAB exposure.


Assuntos
Envelhecimento/efeitos dos fármacos , Proliferação Nociva de Algas , Longevidade/efeitos dos fármacos , Modelos Animais , Medição de Risco/métodos , Poluição da Água/efeitos adversos , Aerossóis , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Drosophila , Feminino , Florida , Longevidade/fisiologia , Masculino , Microcistinas/análise , Microcistinas/toxicidade , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA