Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630023

RESUMO

Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.


Assuntos
Carotenoides/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Lipoxigenase/genética , Pigmentação/genética , Triticum/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Lipoxigenase/metabolismo , Região do Mediterrâneo , Locos de Características Quantitativas , Triticum/enzimologia
2.
J Agron Crop Sci ; 206(1): 64-75, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32063682

RESUMO

Flowering time is the most critical developmental stage in wheat, as it determines environmental conditions during grain filling. Thirty-five spring durum genotypes carrying all known allele variants at Ppd-1 loci were evaluated in fully irrigated field experiments for three years at latitudes of 41°N (Spain), 27°N (northern Mexico) and 19°N (southern Mexico). Relationships between weight of central grains of main spikes (W) and thermal time from flowering to maturity were described by a logistic equation. Differences in flowering time between the allele combination causing the earliest (GS100/Ppd-B1a) and the latest (Ppd-A1b/Ppd-B1a) flowering were 7, 20 and 18 days in Spain, northern Mexico and southern Mexico, respectively. Flowering delay drastically reduced the mean grain filling rate (R) and W at all sites. At autumn-sowing sites, an increase of 1°C in mean temperature during the first half of the grain filling period decreased W by 5.2 mg per grain. At these sites, W was strongly dependent on R. At the spring-sowing site (southern Mexico), W depended on both R and grain filling duration. Our results suggest that incorporating the allele combinations GS100/Ppd-B1a and GS105/Ppd-B1a (alleles conferring photoperiod insensitivity) in newly released varieties can reduce the negative effects of climate change on grain filling at the studied latitudes.

3.
J Exp Bot ; 66(12): 3477-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821073

RESUMO

Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.


Assuntos
Adaptação Fisiológica/genética , Cruzamento/métodos , Mudança Climática , Variação Genética , Triticum/genética , Conservação dos Recursos Naturais
4.
Phytopathology ; 105(12): 1585-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571424

RESUMO

Leaf rust is an important disease that causes significant yield losses in wheat. Many studies have reported the identification of quantitative trait loci (QTL) controlling leaf rust resistance; therefore, QTL meta-analysis has become a useful tool for identifying consensus QTL and refining QTL positions among them. In this study, QTL meta-analysis was conducted using reported results on the number, position, and effects of QTL for leaf rust resistance in bread and durum wheat. Investigation of 14 leaf rust resistance traits from 19 studies involving 20 mapping populations and 33 different parental lines provided information for 144 unique QTL that were projected onto the Wheat Composite 2004 reference map. In total, 35 meta-QTL for leaf rust resistance traits were identified in 17 wheat chromosomes and 13 QTL remained as unique QTL. The results will facilitate further work on the cloning of QTL for pyramiding minor- and partial-effect resistance genes to develop varieties with durable resistance to leaf rust.


Assuntos
Interações Hospedeiro-Patógeno/genética , Imunidade Vegetal/genética , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/fisiologia , Folhas de Planta/microbiologia , Triticum/imunologia , Triticum/microbiologia
5.
BMC Genomics ; 15: 125, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521234

RESUMO

BACKGROUND: Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. RESULTS: The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. CONCLUSIONS: This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat.


Assuntos
Perfilação da Expressão Gênica , Proteômica , Triticum/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Estresse Oxidativo , Fotossíntese/genética , Análise de Componente Principal
6.
Commun Biol ; 5(1): 1235, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371540

RESUMO

Building a resilient and sustainable agricultural sector requires the development and implementation of tailored climate change adaptation strategies. By focusing on durum wheat (Triticum turgidum subsp. durum) in the Euro-Mediterranean region, we estimate the benefits of adapting through seasonal cultivar-selection supported by an idealised agro-climate service based on seasonal climate forecasts. The cost of inaction in terms of mean yield losses, in 2021-2040, ranges from -7.8% to -5.8% associated with a 7% to 12% increase in interannual variability. Supporting cultivar choices at local scale may alleviate these impacts and even turn them into gains, from 0.4% to 5.3%, as soon as the performance of the agro-climate service increases. However, adaptation advantages on mean yield may come with doubling the estimated increase in the interannual yield variability.


Assuntos
Agricultura , Mudança Climática , Aclimatação , Triticum , Adaptação Fisiológica
7.
J Exp Bot ; 62(2): 409-38, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041372

RESUMO

Association mapping was used to dissect the genetic basis of drought-adaptive traits and grain yield (GY) in a collection of 189 elite durum wheat accessions evaluated in 15 environments highly different for water availability during the crop cycle (from 146 to 711 mm) and GY (from 9.9 to 67.3 q ha(-1)). For highly heritable traits (e.g. heading date, kernel weight, etc.) several significant experiment-wise marker-trait associations were detected across five or more (up to 13 for kernel weight) environments, with R(2) values ranging from ca. 5 to 10%. As to GY, significant associations (R(2) from 2.5 to 4.2%) were mostly detected in one environment only (56 markers), while decreasing rapidly from two to five environments (from 20 to three markers, respectively) and with only one marker (Xbarc197 on chr. 5A) found significant in six environments (ranging from low- to high-yielding). These results are probably due to the complex genetic basis of GY and its interaction with environmental conditions. The number of markers significantly affecting GY decreased considerably under drought conditions, suggesting a limited effectiveness of association mapping to identify loci for GY under low-moisture conditions, most likely because different genotypes can attain similar phenotypes via different morpho-physiological traits and corresponding gene networks. Our study confirmed the role of major loci for phenology previously described in biparental mapping populations, highlighted a novel set of loci for drought-adaptive traits, and provided information on the agronomic value of the alleles at such loci across a broad range of soil moisture conditions.


Assuntos
Triticum/genética , Triticum/metabolismo , Água/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento
8.
Ann Bot ; 107(8): 1355-66, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21444337

RESUMO

BACKGROUND AND AIMS: Although the apical development of wheat has been widely described, studies analysing how genetic breeding over the 20th century influenced the developmental phases and its consequences on yield generation are lacking, especially for durum wheat under field conditions in Mediterranean environments. The aims of this study were to analyse the effects of breeding in Spain and Italy on crop development during the last century, to determine whether or not breeding significantly altered the developmental phases between sowing and maturity, and to evaluate the importance of each phase in determining the number of grains per spike of durum wheat (Triticum durum) cultivars representing the germplasm grown throughout the 20th century in Spain and Italy. METHODS: Eight field experiments were carried out during 4 years in two contrasting latitudes (Lleida and Granada, Spain). Plant material consisted of 24 durum wheat cultivars (12 Italian and 12 Spanish) grown throughout the 20th century in Spain and Italy. KEY RESULTS: In Spanish materials, breeding reduced the duration of the period from sowing to anthesis, placing the grain-filling period in better conditions. In those cultivars, the sub-phase sowing-terminal spikelet formation was reduced while the duration of the period from booting to anthesis was increased. The number of grains per spike increased by 23 % from old to modern cultivars, by changes in the number of grains per spikelet in both Spanish and Italian cultivars. Floral abortion from booting to anthesis diminished by 24 % from old to modern cultivars, and grain setting increased by 13 %. CONCLUSIONS: The results suggest that breeding reduced not only plant height, but also the time to anthesis. By extending the duration of the phase from booting to anthesis, which was associated with an increase in spike dry weight and grains per spike, it suggests that future increases in spike fertility could be achieved by enlarging that phase.


Assuntos
Cruzamento , Grão Comestível/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/genética , Flores/genética , Flores/crescimento & desenvolvimento , Itália , Luz , Região do Mediterrâneo , Chuva , Estações do Ano , Espanha , Temperatura , Fatores de Tempo
9.
Front Plant Sci ; 12: 658357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936143

RESUMO

The current lack of efficient methods for high throughput field phenotyping is a constraint on the goal of increasing durum wheat yields. This study illustrates a comprehensive methodology for phenotyping this crop's water use through the use of the two-source energy balance (TSEB) model employing very high resolution imagery. An unmanned aerial vehicle (UAV) equipped with multispectral and thermal cameras was used to phenotype 19 durum wheat cultivars grown under three contrasting irrigation treatments matching crop evapotranspiration levels (ETc): 100%ETc treatment meeting all crop water requirements (450 mm), 50%ETc treatment meeting half of them (285 mm), and a rainfed treatment (122 mm). Yield reductions of 18.3 and 48.0% were recorded in the 50%ETc and rainfed treatments, respectively, in comparison with the 100%ETc treatment. UAV flights were carried out during jointing (April 4th), anthesis (April 30th), and grain-filling (May 22nd). Remotely-sensed data were used to estimate: (1) plant height from a digital surface model (H, R 2 = 0.95, RMSE = 0.18m), (2) leaf area index from multispectral vegetation indices (LAI, R 2 = 0.78, RMSE = 0.63), and (3) actual evapotranspiration (ETa) and transpiration (T) through the TSEB model (R 2 = 0.50, RMSE = 0.24 mm/h). Compared with ground measurements, the four traits estimated at grain-filling provided a good prediction of days from sowing to heading (DH, r = 0.58-0.86), to anthesis (DA, r = 0.59-0.85) and to maturity (r = 0.67-0.95), grain-filling duration (GFD, r = 0.54-0.74), plant height (r = 0.62-0.69), number of grains per spike (NGS, r = 0.41-0.64), and thousand kernel weight (TKW, r = 0.37-0.42). The best trait to estimate yield, DH, DA, and GFD was ETa at anthesis or during grain filling. Better forecasts for yield-related traits were recorded in the irrigated treatments than in the rainfed one. These results show a promising perspective in the use of energy balance models for the phenotyping of large numbers of durum wheat genotypes under Mediterranean conditions.

10.
Front Plant Sci ; 12: 674470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305973

RESUMO

A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the "Fertile Crescent." SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.

11.
Biology (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805192

RESUMO

A panel of 387 durum wheat genotypes including Mediterranean landraces and modern cultivars was characterized with 46,161 diversity arrays technology (DArTseq) markers. Analysis of population structure uncovered the existence of five subpopulations (SP) related to the pattern of migration of durum wheat from the domestication area to the west of the Mediterranean basin (SPs 1, 2, and 3) and further improved germplasm (SPs 4 and 5). The total genetic diversity (HT) was 0.40 with a genetic differentiation (GST) of 0.08 and a mean gene flow among SPs of 6.02. The lowest gene flow was detected between SP 1 (presumably the ancient genetic pool of the panel) and SPs 4 and 5. However, gene flow from SP 2 to modern cultivars was much higher. The highest gene flow was detected between SP 3 (western Mediterranean germplasm) and SP 5 (North American and European cultivars). A genome wide association study (GWAS) approach using the top ten eigenvectors as phenotypic data revealed the presence of 89 selective sweeps, represented as quantitative trait loci (QTL) hotspots, widely distributed across the durum wheat genome. A principal component analysis (PCoA) using 147 markers with -log10p > 5 identified three regions located on chromosomes 2A, 2B and 3A as the main drivers for differentiation of Mediterranean landraces. Gene flow between SPs offers clues regarding the putative use of Mediterranean old durum germplasm by the breeding programs represented in the structure analysis. EigenGWAS identified selective sweeps among landraces and modern cultivars. The analysis of the corresponding genomic regions in the 'Zavitan', 'Svevo' and 'Chinese Spring' genomes discovered the presence of important functional genes including Ppd, Vrn, Rht, and gene models involved in important biological processes including LRR-RLK, MADS-box, NAC, and F-box.

12.
Front Plant Sci ; 11: 838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655598

RESUMO

Wheat adaptability to a wide range of environmental conditions is mostly determined by allelic diversity within genes controlling vernalization requirement (Vrn-1) and photoperiod sensitivity (Ppd-1). We characterized a panel of 151 durum wheat Mediterranean landraces and 20 representative locally adapted modern cultivars for their allelic composition at Vrn-1 and Ppd-1 gene using diagnostic molecular markers and studied their association with the time needed to reach six growth stages under field conditions over 6 years. Compared with the more diverse and representative landrace collection, the set of modern cultivars were characterized by a reduction of 50% in the number of allelic variants at the Vrn-A1 and Vrn-B1 genes, and the high frequency of mutant alleles conferring photoperiod insensitivity at Ppd-A1, which resulted on a shorter cycle length. Vrn-A1 played a greater role than Vrn-B1 in regulating crop development (Vrn-A1 > Vrn-B1). The results suggest that mutations in the Vrn-A1 gene may have been the most important in establishing the spring growth habit of Mediterranean landraces and modern durum cultivars. The allele Vrn-A1d, found in 10 landraces, delayed development. The relative effects of single Vrn-A1 alleles on delaying the development of the landraces were vrn-A1 = Vrn-A1d > Vrn-A1b > Vrn-A1c. Allele vrn-B1 was present in all except two landraces and in all modern cultivars. The null allele at Ppd-A1 (a deletion first observed in the French bread wheat cultivar 'Capelle-Desprez') was found for the first time in durum wheat in the present study that identified it in 30 landraces from 13 Mediterranean countries. Allele Ppd-A1a (GS105) was detected in both germplasm types, while the allele Ppd-A1a (GS100) was found only in modern North American and Spanish cultivars. The relative effect of single Ppd-A1 alleles on extending phenological development was Ppd-A1(DelCD) > Ppd-A1b > Ppd-A1a (GS105) > Ppd-A1a (GS100). Sixteen Vrn-1+Ppd-1 allelic combinations were found in landraces and six in modern cultivars, but only three were common to both panels. Differences in the number of days to reach anthesis were 10 days in landraces and 3 days in modern cultivars. Interactive effects between Vrn-1 and Ppd-1 genes were detected.

13.
Plants (Basel) ; 9(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297379

RESUMO

This study analysed the effect of flowering time as influenced by photoperiod sensitivity genes on yield and yield stability in durum wheat. Twenty-three spring genotypes harbouring different allele combinations at Ppd-A1 and Ppd-B1 were grown in 15 field experiments at three sites at latitudes from 41° to 19° N (Spain, Mexico-North and Mexico-South). Low temperature and solar radiation before flowering and long day length during grain-filling characteristic for the Spanish site resulted in high grain number/m2 (GN) and yield (GY), while a moderate GN combined with high solar radiation during grain-filling at Mexico-North led to heavier grains. Allele combination GS100-Ppd-A1a/Ppd-B1a reduced the flowering time up to nine days when compared with Ppd-A1b/Ppd-B1a. Differences in flowering time caused by Ppd-A1/Ppd-B1 allele combinations did not affect yield. Combinations GS105-Ppd-A1a/Ppd-B1b and Ppd-A1b/Ppd-B1b resulted in the highest GN, linked to spikelets/spike, which was higher in GS105-Ppd-A1a/Ppd-B1b due to more grains/spikelet. Flowering time caused by Eps had a minor effect on GN, spikes/m2 and grains/spike, but late flowering resulted in reduced grain weight and GY. Allele combinations harbouring alleles conferring a similar photoperiod sensitivity response at Ppd-A1 and Ppd-B1 resulted in greater yield stability than combinations that carry alleles conferring a different response. Allele combination GS100-Ppd-A1a/Ppd-B1a was the most suitable in terms of yield and yield stability of durum wheat cultivated under irrigation within the studied latitudes.

14.
Genetics ; 178(1): 489-511, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202390

RESUMO

Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha(-1)). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.


Assuntos
Adaptação Fisiológica/genética , Grão Comestível/genética , Locos de Características Quantitativas/genética , Triticum/genética , Água/fisiologia , Cromossomos de Plantas/genética , Meio Ambiente , Epistasia Genética , Variação Genética , Endogamia , Escore Lod , Fenótipo , Triticum/anatomia & histologia
15.
PLoS One ; 14(7): e0219867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306459

RESUMO

Assessment of genetic diversity and population structure in crops is essential for breeding and germplasm conservation. A collection of 354 bread wheat genotypes, including Mediterranean landraces and modern cultivars representative of the ones most widely grown in the Mediterranean Basin, were characterized with 11196 single nucleotide polymorphism (SNP) markers. Total genetic diversity (HT) and polymorphic information content (PIC) were 0.36 and 0.30 respectively for both landraces and modern cultivars. Linkage disequilibrium for the modern cultivars was higher than for the landraces (0.18 and 0.12, respectively). Analysis of the genetic structure showed a clear geographical pattern for the landraces, which were clustered into three subpopulations (SPs) representing the western, northern and eastern Mediterranean, whereas the modern cultivars were structured according to the breeding programmes that developed them: CIMMYT/ICARDA, France/Italy, and Balkan/eastern European countries. The modern cultivars showed higher genetic differentiation (GST) and lower gene flow (0.1673 and 2.49, respectively) than the landraces (0.1198 and 3.67, respectively), indicating a better distinction between subpopulations. The maximum gene flow was observed between landraces from the northern Mediterranean SPs and the modern cultivars released mainly by French and Italian breeding programmes.


Assuntos
Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Triticum/classificação , Triticum/genética , Alelos , Fluxo Gênico , Marcadores Genéticos , Genoma de Planta , Desequilíbrio de Ligação , Região do Mediterrâneo , Filogenia , Filogeografia
16.
Front Plant Sci ; 9: 80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472936

RESUMO

Genetic diversity of durum wheat landraces is a powerful tool for the introgression of new alleles of commercial interest in breeding programs. In a previous study, our team structured a collection of 172 durum wheat landraces from 21 Mediterranean countries in four genetic populations related to their geographical origin: east Mediterranean (17), east Balkan and Turkey (23), west Balkan and Egypt (25), and West Mediterranean (73), leaving 34 genotypes as admixed, and association mapping was carried out for important agronomic traits. Using a subset of this collection, the current study identified 23 marker alleles with a differential frequency in landraces from east and west regions of the Mediterranean Basin, which affected important agronomic traits. Eastern landraces had higher frequencies than the western ones of alleles increasing the number of spikes (wPt-5385 on chromosome 1B), grains per m2 (wPt-0841 on chromosome 7B), and grain filling duration (7 significant marker trait associations). Eastern landraces had higher frequencies of marker alleles located on chromosomes 4A, 5B, and 6B associated with reduced cycle length, and lighter grains than the western ones. Also for lower kernel weight, four marker alleles were located on chromosome 1A. Breeders may use the molecular markers identified in the current study for improving yield under specific Mediterranean environments.

17.
Front Plant Sci ; 9: 888, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008727

RESUMO

The main yield components in durum wheat are grain number per unit area (GN) and thousand kernel weight (TKW), both of which are affected by environmental conditions. The most critical developmental stage for their determination is flowering time, which partly depends on photoperiod sensitivity genes at Ppd-1 loci. Fifteen field experiments, involving 23 spring durum wheat genotypes containing all known allelic variants at the PHOTOPERIOD RESPONSE LOCUS (Ppd-A1 and Ppd-B1) were carried out at three sites at latitudes ranging from 41° to 27° N (Spain, Mexico-north, and Mexico-south, the latter in spring planting). Allele GS100 at Ppd-A1, which causes photoperiod insensitivity and results in early-flowering genotypes, tended to increase TKW and yield, albeit not substantially. Allele Ppd-B1a, also causing photoperiod insensitivity, did not affect flowering time or grain yield. Genotypes carrying the Ppd-B1b allele conferring photoperiod sensitivity had consistently higher GN, which did not translate into higher yield due to under-compensation in TKW. This increased GN was due to a greater number of grains spike-1 as a result of a higher number of spikelets spike-1. Daylength from double ridge to terminal spikelet stage was strongly and positively associated with the number of spikelets spike-1 in Spain. This association was not found in the Mexico sites, thereby indicating that Ppd-B1b had an intrinsic effect on spikelets spike-1 independently of environmental cues. Our results suggest that, in environments where yield is limited by the incapacity to produce a high GN, selecting for Ppd-B1b may be advisable.

18.
Front Plant Sci ; 9: 1512, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459781

RESUMO

In order to identify genome regions related to pasta-making quality traits, association mapping (AM) was performed in a set of 165 durum wheat landraces from 21 Mediterranean countries. The collection was genotyped using 1149 DArT markers and 872 of them with a known genetic position were used for AM. The collection was grown in north-east Spain during 3 years. Results of ANOVA showed that trait variation for quality traits, except for grain protein content (GPC), was mainly explained by genetic effects. Landraces showed higher GPC than modern cultivars but lower gluten strength (GS). Modern and eastern landraces showed the highest yellow color index (YI). Balkan landraces showed the lowest test weight (TW). A total of 92 marker-trait associations were detected, 20 corresponding to GS, 21 to GPC, 21 to YI and 30 to TW. With the aim of detecting new genomic regions involved in grain quality, the position of the associations was compared with previously mapped QTL by a meta-QTL analysis. A total of 249 QTLs were projected onto the same map used for AM, identifying 45 meta-QTL (MQTL) regions and the remaining 15 QTLs as singletons. The position of known genes involved in grain quality was also included, and gene annotation within the most significant regions detected by AM was carried out using the wheat genome sequence.

19.
Front Plant Sci ; 9: 563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765385

RESUMO

Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations.

20.
J Agric Food Chem ; 55(20): 8144-51, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17848082

RESUMO

Amino acid composition is an important feature in determining the nutritional value of wheat grain for human and animal diets. Environmental conditions are known to influence protein quantity as well as grain production and, in turn, amino acid composition. In this study, grain yield, protein content, and amino acid composition were determined in 10 durum wheat genotypes under three water and temperature regimes in a Mediterranean environment. The highest value for grain-protein content (15.7%) was found in the warmer and driest environment and the lowest (12.8%) in the irrigated environment. Although amino acid composition showed significant variation for all genotypes, with the exception of arginine and cysteine, major changes in amino acid composition were caused by environmental conditions and in particular by water availability and temperature during the grain-filling period, which significantly altered the duration of grain development. The amino acids with the highest percentage of variation between environments were tyrosine (26.4%), lysine (23.7%), methionine (20.3%), threonine (19.3%), and valine (15.6%), whereas phenylalanine (5.1%), glycine (6.4%), and aspartic acid (6.8%) showed the least variation between environments. Whereas the content of glutamine, phenylalanine, and proline increased with the decrease in grain-filling duration, the remaining amino acids tended to diminish, presumably because high temperature and drought favored the deposition of gliadins (proteins particularly rich in glutamine and proline), to the detriment of albumins and globulins (proteins especially rich in threonine, lysine, methionine, valine, and histidine). Despite the negative correlations found between the percentage of protein and its content in essential amino acids, the results indicate that reductions in lysine per unit of food were not very pronounced (0.32 to 0.29 g/100 g of flour) with increases of up 22.7% in grain-protein content, whereas threonine did not change and valine even slightly increased.


Assuntos
Aminoácidos/análise , Meio Ambiente , Sementes/química , Triticum/química , Triticum/crescimento & desenvolvimento , Genótipo , Região do Mediterrâneo , Temperatura , Triticum/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA