Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Polim Med ; 54(1): 15-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197603

RESUMO

BACKGROUND: Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. OBJECTIVES: First, deep eutectic solvents (DES) were used as solubilizing agents for DAP as an alternative to traditional solvents. Second, intermolecular interactions in the systems were described and quantified. Finally, the solubility prediction model, previously created using the machine learning protocol, was extended and improved using new data obtained for eutectic systems. MATERIAL AND METHODS: New DES were created by blending choline chloride (ChCl) with 6 selected polyols. The solubility of DAP in these solvents was measured spectrophotometrically. The impact of water dilution on the solubility curve was investigated. Experimental research was enriched with theoretical interpretations of intermolecular interactions, identifying the most probable pairs in the systems. Dapsone self-association and its ability to interact with components of the analyzed systems were considered. Thermodynamic characteristics of pairs were utilized as molecular descriptors in the machine learning process, predicting solubility in both traditional organic solvents and the newly designed DES. RESULTS: The newly formulated solvents demonstrated significantly higher efficiency compared to traditional organic solvents, and a small addition of water increased solubility, indicating its role as a co-solvent. The interpretation of the mechanism of DAP solubility highlighted the competitive nature of self-association and pair formation. Thermodynamic parameters characterizing affinity were instrumental in developing an efficient model for theoretical screening across diverse solvent classes. The study emphasized the necessity of retraining models when introducing new experimental data, as exemplified by enriching the model with data from DES. CONCLUSIONS: The research showcased the efficacy of developing new DES for enhancing solubility and creating environmentally and pharmaceutically viable systems, using DAP as an example. Molecular interactions proved valuable in understanding solubility mechanisms and formulating predictive models through machine learning processes.


Assuntos
Dapsona , Solventes Eutéticos Profundos , Aprendizado de Máquina , Solubilidade , Dapsona/química , Solventes Eutéticos Profundos/química , Termodinâmica , Solventes/química
2.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430302

RESUMO

The active DNA demethylation mechanism involves 5-methylcytosine (5-mCyt) enzymatic oxidation with the subsequent formation of 5-hydroxymethylcytosine (5-hmCyt), which can be further oxidized to 5-formylcytosine (5-fCyt) and 5-carboxylcytosine (5-caCyt). The products of active DNA demethylation are released into the bloodstream and eventually also appear in urine. We used online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS) to compare DNA methylation marks and 8-oxo-2'-deoxyguanosine (8-oxodG) in colorectal cancer and pre-cancerous condition in urine. The study included four groups of subjects: healthy controls, patients with inflammatory bowel disease (IBD), persons with adenomatous polyps (AD), and individuals with colorectal cancer (CRC). We have found that the level of 5-fCyt in urine was significantly lower for CRC and polyp groups than in the control group. The level of 5-hmCyt was significantly higher only in the CRC group compared to the control (2.3 vs. 2.1 nmol/mmol creatinine). Interestingly, we have found highly statistically significant correlation of 5-hydroxymethyluracil with 5-hydroxymethylcytosine, 5-(hydroxymethyl)-2'-deoxycytidine, 5-(hydroxymethyl)-2'-deoxyuridine, and 5-methyl-2'-deoxycytidine in the CRC patients' group.


Assuntos
Neoplasias do Colo , Espectrometria de Massas em Tandem , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Epigênese Genética , Neoplasias do Colo/genética , DNA/química , Biomarcadores
3.
Biomarkers ; 20(5): 287-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26329524

RESUMO

CONTEXT: Oxidative stress linked with chronic inflammation is associated with etiology of the colorectal cancer. OBJECTIVES: To assess the diagnostic utility of urinary excretion of oxidatively modified DNA bases/nucleoside: 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 5-hydroxymethyluracil (5-hmUra). MATERIALS AND METHODS: Seventy-two healthy controls, 15 patients with adenomas and 56 colorectal cancer patients were recruited. RESULTS: The receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) for all markers tested separately was <0.7. The combination of these modifications showed better diagnostic power (AUC = 0.778 for 8-oxoGua + 8-oxodG)/5hmUra ratio). CONCLUSION: Urinary DNA modifications may reflect the oxidative stress/chronic inflammation in colorectal cancer but diagnostic performance for early-detection is moderate.


Assuntos
Biomarcadores Tumorais/urina , Neoplasias Colorretais/urina , Guanina/análogos & derivados , Pentoxil (Uracila)/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina/análogos & derivados , Idoso , Feminino , Guanina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Pentoxil (Uracila)/urina
4.
Int J Cancer ; 134(2): 376-83, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23832862

RESUMO

The aim of this work was to answer the question whether the broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair are appropriate prognosis factors of colon cancer (CRC) patients survival? The following parameters were analyzed for 89 CRC patients: concentration of uric acid and vitamins A, E, C in plasma; levels of 8-oxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) in DNA of leukocyte and colon tissues; urinary excretion rates of 8-oxodGuo and 8-oxoGua (8-oxo-7,8-dihydroguanine); the activity and mRNA or protein level of repair enzymes OGG1, APE1, ANPG, TDG and PARP1. All DNA modifications and plasma antioxidants were analyzed using high performance liquid chromatography (HPLC) or HPLC/gas chromatography-mass spectrometry techniques. Expression of repair proteins was analyzed by QPCR, Western or immunohistochemistry methods. Longer survival coincided with low levels of 8-oxodGuo/8oxoGua in urine and 8-oxodGuo in DNA as well as with high concentration of uric acid plasma level. In contrast to expectations, longer survival coincided with lower mRNA level in normal colon tissue of the main 8-oxoGua DNA glycosylase, OGG1, but no association was found for PARP-1 expression. When analyzing simultaneously two parameters the discriminating power increased significantly. Combination of low level of urinary 8-oxoGua together with low level of 8-oxodGuo in leukocyte (both below median value) or high concentration of plasma uric acid (above median value) have the best prediction power. Since prediction value of these parameters seems to be comparable to conventional staging procedure, they could possibly be used as markers to predict clinical success in CRC treatment.


Assuntos
Adenocarcinoma/mortalidade , Biomarcadores Tumorais/análise , Neoplasias do Colo/mortalidade , Desoxiguanosina/análogos & derivados , Guanina/análogos & derivados , Ácido Úrico/sangue , 8-Hidroxi-2'-Desoxiguanosina , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/metabolismo , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Desoxiguanosina/análise , Desoxiguanosina/genética , Feminino , Seguimentos , Cromatografia Gasosa-Espectrometria de Massas , Guanina/análise , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estresse Oxidativo , Prognóstico , Taxa de Sobrevida
5.
Biol Reprod ; 91(3): 55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25061097

RESUMO

5-Methylcytosine is one of the most important epigenetic modifications and has a profound impact on embryonic development. After gamete fusion, there is a widespread and rapid active demethylation process of sperm DNA, which suggests that the paternal epigenome has an important role during embryonic development. To better understand the epigenome of sperm DNA and its possible involvement in a developing embryo, we determined epigenetic marks in human sperm DNA and in surrogate somatic tissue leukocytes; the analyzed epigenetic modifications included 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine. For absolute determination of the modification, we used liquid chromatography with UV detection and tandem mass spectrometry techniques with isotopically labeled internal standards. Our analyses demonstrated, for the first time to date, that absolute global values of 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine in sperm are highly statistically different from those observed for leukocyte DNA, with respective mean values of 3.815% versus 4.307%, 0.797 versus 2.945 per 104 deoxynucleosides, and 5.209 versus 0.492 per 106 deoxynucleosides. We hypothesize that an exceptionally high value of 5-hydroxymethyluracil in sperm (>10-fold higher than in leukocytes) may play a not yet recognized regulatory role in the paternal genome.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Metilação de DNA , Epigênese Genética , Pentoxil (Uracila)/análogos & derivados , Espermatozoides/metabolismo , Regulação para Cima , 5-Metilcitosina/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Citosina/sangue , Citosina/metabolismo , DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/sangue , Desoxicitidina/metabolismo , Humanos , Leucócitos/metabolismo , Masculino , Pentoxil (Uracila)/sangue , Pentoxil (Uracila)/metabolismo , Polônia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Timidina/análogos & derivados , Timidina/sangue , Timidina/metabolismo
6.
Sci Rep ; 14(1): 6481, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499584

RESUMO

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Assuntos
Neoplasias da Mama , Dioxigenases , Humanos , Feminino , Desmetilação do DNA , Neoplasias da Mama/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 5-Metilcitosina/metabolismo , Metilação de DNA , Biomarcadores/metabolismo , DNA/metabolismo , Epigênese Genética , Leucócitos/metabolismo , Carcinogênese/genética , Dioxigenases/genética
7.
Biochemistry ; 51(9): 1822-4, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22360777

RESUMO

We hypothesized that DNA damage products (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) may be well-suited biomarkers of risk and diagnosis for atherosclerosis. We tested this hypothesis by measuring the levels of R-cdA and S-cdA and another product, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), in urine of atherosclerosis patients and healthy individuals using liquid chromatography-tandem mass spectrometry with isotope dilution. We showed the presence of these products at significantly greater concentrations in urine of atherosclerosis patients than in that of healthy individuals. Our data suggest that R-cdA and S-cdA can be accurately and reproducibly measured in human urine as potential biomarkers of risk and diagnosis for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Dano ao DNA , Desoxiadenosinas/urina , Aterosclerose/urina , Biomarcadores/urina , Cromatografia Líquida , Humanos , Estereoisomerismo , Espectrometria de Massas em Tandem
8.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269510

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are characterized by genomic instability, which may arise from the global hypomethylation of the DNA. The active DNA demethylation process may be linked with aberrant methylation and can be involved in leukemogenesis. The levels of 5-methylcytosine oxidation products were analyzed in minimally invasive material: the cellular DNA from peripheral blood cells and urine of patients with AML and MDS along with the control group, using isotope-dilution two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. The receiver operating characteristic curve analysis was used for the assessment of the ability to discriminate patients' groups from the control group, and AML from MDS. The most diagnostically useful for discriminating AML patients from the control group was the urinary excretion of 5-hydroxymethylcytosine (AUC = 0.918, sensitivity: 85%, and specificity: 97%), and 5-(hydroxymethyl)-2'-deoxyuridine (0.873, 74%, and 92%), while for MDS patients 5-(hydroxymethyl)-2'-deoxycytidine in DNA (0.905, 82%, and 98%) and urinary 5-hydroxymethylcytosine (0.746, 66%, and 92%). Multi-factor models of classification trees allowed the correct classification of patients with AML and MDS in 95.7% and 94.7% of cases. The highest prognostic value of the analyzed parameters in predicting the transformation of MDS into AML was observed for 5-carboxy-2'-deoxycytidine (0.823, 80%, and 97%) and 5-(hydroxymethyl)-2'-deoxyuridine (0.872, 100%, and 75%) in DNA. The presented research proves that the intermediates of the active DNA demethylation pathway determined in the completely non-invasive (urine) or minimally invasive (blood) material can be useful in supporting the diagnostic process of patients with MDS and AML. The possibility of an early identification of a group of MDS patients with an increased risk of transformation into AML is of particular importance.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , DNA/metabolismo , Desmetilação do DNA , Desoxicitidina , Desoxiuridina/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/diagnóstico , Prognóstico
9.
Materials (Basel) ; 14(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34683507

RESUMO

Solubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived molecular descriptors, adequate for development of an ensemble of neural networks model (ENNM), for solubility computations of sulfamethizole (SMT) in neat and aqueous binary solvent mixtures. The machine learning procedure utilized information encoded in σ-potential profiles computed using the COSMO-RS approach. The resulting nonlinear model is accurate in backcomputing SMT solubility and allowed for extensive screening of green solvents. Since the experimental characteristics of SMT solubility are limited, the data pool was extended by new solubility measurements in water, five neat organic solvents (acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, and methanol), and their aqueous binary mixtures at 298.15, 303.15, 308.15, and 313.15 K. Experimentally determined order of decreasing SMT solubility in neat solvents is the following: N,N-dimethylformamide > dimethyl sulfoxide > methanol > acetonitrile > 1,4dioxane >> water, in all studied temperatures. Similar trends are observed for aqueous binary mixtures. Since N,N-dimethylformamide is not considered as a green solvent, the more acceptable replacers were searched for using the developed model. This step led to the conclusion that 4-formylmorpholine is a real alternative to N,N-dimethylformamide, fulfilling all requirements of both high dissolution potential and environmental friendliness.

10.
Methods Mol Biol ; 2198: 27-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822020

RESUMO

Stable-isotope-dilution tandem mass spectrometry is the most advanced technique used for quantitative determination of a wide spectrum of endogenously generated DNA nucleobase modifications. It is regarded as a gold standard for such analyses. Here, we consider the requirements for reliable identification and quantification of DNA adducts/modifications, whether endogenously derived or not, and discuss how their quantification can provide information on the mechanism of action and the biological relevance of individual nucleobase modifications. A clinical application of such measurements will only be possible after a full validation of the assay and once we have gained a better understanding of the exact role that these DNA modifications play in disease pathogenesis. Once these prerequisites are satisfied, DNA modification measurements may be helpful as clinical parameters for treatment monitoring, for risk group identification and for the development of prevention strategies.


Assuntos
DNA/metabolismo , Epigênese Genética , Epigenômica , Espectrometria de Massas , Animais , DNA/genética , DNA/urina , Metilação de DNA , Epigenômica/métodos , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem , Uracila/metabolismo , Urinálise/métodos
11.
Methods Mol Biol ; 2198: 109-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822026

RESUMO

Analytical techniques based on mass spectrometry allow to analyze DNA modifications in body fluids. Here we describe two chromatographic methods that can be used for the simultaneous determination of the modified DNA bases and nucleosides in the same urine sample: isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS) and high-performance liquid chromatography coupled with gas chromatography and mass spectrometry (HPLC/GC/MS).


Assuntos
Líquidos Corporais/metabolismo , DNA/metabolismo , Epigênese Genética , Epigenômica , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , DNA/urina , Epigenômica/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos
12.
Methods Mol Biol ; 2198: 123-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822027

RESUMO

Reliable quantitative analysis of DNA modification using liquid chromatography coupled with tandem mass spectrometry requires stable isotope-labeled internal standards. Only some of them are commercially available. Here we present a method allowing for the synthesis of [13C10,15N2]-5-methyl-2'-deoxycytidine from [13C10,15N2]-2'-deoxythymidine. We also describe an approach for the oxidation of [13C10,15N2]-5-methyl-2'-deoxycytidine and [13C10,15N2]-2'-deoxythymidine with Na2S2O8, leading to the generation of [13C10,15N2]-5-formyl-2'-deoxycytidine, [13C10,15N2]-5-carboxy-2'-deoxycytidine or [13C10,15N2]-5-(hydroxymethyl)-2'-deoxyuridine, correspondingly. Moreover, we provide optimized protocols for the oxidation of [13C5,15N2]-thymine to [13C10,15N2]-5-hydroxymethyluracil, [13C10,15N2]-5-formyluracil, and [13C10,15N2]-5-carboxyuracil using Na2S2O8.


Assuntos
Cromatografia Líquida de Alta Pressão , DNA/química , Epigênese Genética , Epigenômica , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , DNA/genética , DNA/metabolismo , Epigenômica/métodos , Humanos , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/metabolismo , Oxirredução , Espectrometria de Massas em Tandem/métodos , Timina/química , Timina/metabolismo
13.
Sci Rep ; 11(1): 21345, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725426

RESUMO

The active DNA demethylation process may be linked to aberrant methylation and may be involved in leukemogenesis. We investigated the role of epigenetic DNA modifications in childhood acute lymphoblastic leukemia (ALL) diagnostics and therapy monitoring. We analyzed the levels of 5-methyl-2'-deoxycytidine (5-mdC) oxidation products in the cellular DNA and urine of children with ALL (at diagnosis and during chemotherapy, n = 55) using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry (2D UPLC-MS/MS). Moreover, the expression of Ten Eleven Translocation enzymes (TETs) at the mRNA and protein levels was determined. Additionally, the ascorbate level in the blood plasma was analyzed. Before treatment, the ALL patients had profoundly higher levels of the analyzed modified DNA in their urine than the controls. After chemotherapy, we observed a statistically significant decrease in active demethylation products in urine, with a final level similar to the level characteristic of healthy children. The level of 5-hmdC in the DNA of the leukocytes in blood of the patient group was significantly lower than that of the control group. Our data suggest that urinary excretion of epigenetic DNA modification may be a marker of pediatric ALL status and a reliable marker of chemotherapy response.


Assuntos
Biomarcadores Tumorais/genética , DNA/genética , Epigênese Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Biomarcadores Tumorais/urina , Criança , Pré-Escolar , DNA/urina , Metilação de DNA , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/urina
14.
Mutagenesis ; 25(5): 463-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20534734

RESUMO

Oxidative stress is involved in the pathogenesis of colon cancer. We wanted to elucidate at which stage of the disease this phenomenon occurs. In the examined groups of patients with colorectal cancer (CRC, n = 89), benign adenoma (AD, n = 77) and healthy volunteers (controls, n = 99), we measured: vitamins A, C and E in blood plasma, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) in leukocytes and urine, leukocyte 8-oxoGua excision activity, mRNA levels of APE1, OGG1, 8-oxo-7,8-dihydrodeoxyguanosine 5'-triphosphate pyrophosphohydrolase (MTH1) and OGG1 polymorphism. The vitamin levels decreased gradually in AD and CRC patients. 8-OxodG increased in leukocytes and urine of CRC and AD patients. 8-OxoGua was higher only in the urine of CRC patients. 8-OxoGua excision was higher in CRC patients than in controls, in spite of higher frequency of the OGG1 Cys326Cys genotype, encoding a glycosylase with decreased activity. mRNA levels of OGG1 and APE1 increased in CRC and AD patients, which could explain increased 8-oxoGua excision rate in CRC patients. MTH1 mRNA was also higher in CRC patients. The results suggest that oxidative stress occurs in CRC and AD individuals. This is accompanied by increased transcription of DNA repair genes, and increased 8-oxoGua excision rate in CRC patients, which is, however, insufficient to counteract the increased DNA damage.


Assuntos
Adenoma/metabolismo , Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Reparo do DNA/genética , Desoxiguanosina/análogos & derivados , Estresse Oxidativo/genética , 8-Hidroxi-2'-Desoxiguanosina , Adenoma/sangue , Adenoma/genética , Adenoma/urina , Pólipos Adenomatosos/sangue , Pólipos Adenomatosos/metabolismo , Adulto , Idoso , Envelhecimento/genética , Antioxidantes/metabolismo , Carcinoma/sangue , Carcinoma/genética , Carcinoma/urina , Estudos de Casos e Controles , Neoplasias do Colo/sangue , Neoplasias do Colo/genética , Neoplasias do Colo/urina , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxiguanosina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Fumar/efeitos adversos , Fumar/genética
15.
Int J Cancer ; 125(9): 2209-13, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19623658

RESUMO

Carriers of BRCA1 mutation face highly increased risk of breast and ovarian cancer and some studies with cell culture suggest that the encoded protein may be involved in oxidatively damaged DNA repair. However, no studies concerning a possible link between oxidatively damaged DNA and BRCA1 deficiency have been conducted with the mutations carriers. Therefore, to assess an involvement of BRCA in oxidative damage to DNA in the present study a broad spectrum of parameters reflecting oxidative stress/DNA damage were analyzed in 3 subject groups; (i) carriers of BRCA1 mutations without symptoms of the disease; (ii) patients with breast or ovarian cancer with the mutations and (iii) the group of healthy subjects recruited from among close relatives of the group of carriers without symptoms of the disease. We found that the endogenous levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in leukocytes DNA and excretion rates of urinary 8-oxodG were significantly higher in the cancer patients than in the healthy carriers. Similarly, to the cancer patient group, 8-oxodG level in leukocytes DNA is significantly higher in the carriers group in comparison with control group. That the control group comprised close relatives of the carriers gives further credit to our finding. Since we did not observe substantial differences in the analyzed markers of oxidative stress between the controls and the carriers, the observed increase in the level may be a result of a deficiency in the repair of 8-oxodG.


Assuntos
Neoplasias da Mama/genética , Desoxiadenosinas/sangue , Genes BRCA1 , Leucócitos/química , Mutação , Neoplasias Ovarianas/genética , Neoplasias da Mama/sangue , Dano ao DNA , Feminino , Heterozigoto , Humanos , Neoplasias Ovarianas/sangue , Estresse Oxidativo
16.
Biomarkers ; 14(2): 103-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19330588

RESUMO

Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is widely used as a marker of oxidative stress. Here we report the comparison of two, distinct chromatographic assays with an enzyme-linked immunosorbent assay (ELISA). The chromatographic assays displayed good agreement (r =:0.89, p < 0.0001), whereas there was markedly worse, albeit still significant, agreement with the ELISA (high-pressure liquid chromatography followed by gas chromatography (HPLC-GC/MS), r = 0.43; HPLC with electrochemical detection (HPLC-EC), r = 0.56; p < 0.0001). Mean values differed significantly between the chromatographic assays and the ELISA (HPLC-GC/MS 3.86, HPLC-EC 4.20, ELISA 18.70 ng mg(-1) creatinine; p < 0.0001). While it is reassuring to note good agreement between chromatographic assays, this study reveals significant short-comings in the ELISA, which brings into question its continued use in its present form.


Assuntos
Desoxiguanosina/análogos & derivados , Laboratórios , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Cromatografia Líquida de Alta Pressão , Creatinina/urina , Desoxiguanosina/urina , Eletroquímica , Ensaio de Imunoadsorção Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade
17.
Int J Cancer ; 123(8): 1964-7, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18688851

RESUMO

It is possible that oxidatively damaged DNA which arises as a result of radiotherapy may be involved in the therapeutic effect of the ionizing radiation and in the side effects. Therefore, for the first time, the broad spectrum of oxidatively damaged DNA biomarkers: urinary excretion of 8-oxodG (8-oxo-7,8-dihydro-2'-deoxyguanosine), 8-oxoGua (8-oxo-7,8-dihydroguanine) as well as the level of oxidatively damaged DNA in leukocytes, was analyzed in head and neck cancer patients (n = 27) undergoing fractionated radiotherapy using methodologies which involve HPLC (high-performance liquid chromatography) prepurification followed by gas chromatography with isotope dilution mass spectrometry detection and HPLC/EC. Of all the analyzed parameters in the majority of patients, only urinary excretion of the modified nucleoside significantly increased over the initial level in the samples collected 24 hr after the last fraction. However, for the distinct subpopulation of 10 patients, a significant increase in the level of 8-oxodG in cellular DNA and a simultaneous drop in urinary 8-oxoGua (the repair product of oxidative DNA damage) were detected after completion of the therapy. Because 8-oxoGua is a repair product of the DNA damage, there is a possibility that, at least in the case of some patients with the lowest activity of OGG1 (8-oxo-7,8-dihydroguanine glycosylase), the combination of lower OGG1 repair efficacy and irradiation was associated with increased background level of 8-oxoGua in cellular DNA. Apparently reduced DNA repair is unable to cope with the radiation-induced, and the extra amount of 8-oxoGua leading to an increase of potentially mutagenic/carcinogenic lesions.


Assuntos
Dano ao DNA , DNA de Neoplasias/efeitos da radiação , Neoplasias de Cabeça e Pescoço/radioterapia , Lesões por Radiação/genética , 8-Hidroxi-2'-Desoxiguanosina , Cromatografia Líquida de Alta Pressão , DNA de Neoplasias/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/urina , Fracionamento da Dose de Radiação , Cromatografia Gasosa-Espectrometria de Massas , Guanina/análogos & derivados , Guanina/sangue , Guanina/urina , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/urina , Humanos , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Estresse Oxidativo/genética , Lesões por Radiação/sangue , Lesões por Radiação/metabolismo , Lesões por Radiação/urina , Ácido Úrico/sangue , Ácido Úrico/urina
18.
J Neurol Sci ; 266(1-2): 57-62, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17888453

RESUMO

Oxidative DNA damage may contribute to neuronal cell loss and may be involved in pathogenesis of some neurodegenerative diseases. We assessed the broad spectrum of oxidative DNA damage biomarkers and antioxidants in mixed Alzheimer disease/vascular dementia (MD) and in control patients. The amount of the products of oxidative DNA damage repair (8-oxo-2'-deoxyguanosine and 8-oxoguanine) excreted into urine and cerebrospinal fluid (CSF) was measured by gas chromatography/mass spectrometry with HPLC pre-purification. The level of 8-oxo-2'-deoxyguanosine in leukocytes' DNA, antioxidant vitamins and uric acid concentrations in blood plasma were analyzed by the mean of HPLC technique. For the first time we demonstrated oxidative DNA damage on the level of whole organism and in CSF of MD patients. Urinary excretion of oxidative DNA damage repair products were higher in patients with MD than in the control group. The level 8-oxoguanine in cerebrospinal fluid of MD patients almost doubled the level found in the control group. Also the concentrations of ascorbic acid and retinol in plasma were reduced in MD patients. Oxidative stress/DNA damage is an important factor that may be involved in pathogenesis of mixed dementia. It is likely that treatment of these patients with antioxidants may slow down the progression of the disease.


Assuntos
Doença de Alzheimer/patologia , Dano ao DNA , Demência Vascular/patologia , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Antioxidantes/metabolismo , Ácido Ascórbico/sangue , Cromatografia Líquida de Alta Pressão , Demência Vascular/líquido cefalorraquidiano , Demência Vascular/complicações , Desoxiguanosina/análogos & derivados , Desoxiguanosina/líquido cefalorraquidiano , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Ácido Úrico/sangue , Vitamina A/sangue , Vitamina E/sangue
19.
Mutat Res ; 640(1-2): 170-3, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18281064

RESUMO

It has been known for a long time that DNA hypomethylation occurs in many human cancers and precancerous conditions. However, the mechanisms of hypomethylation are largely unknown. It is possible that endogenous 8-oxo-7,8-dihydroguanine (8-oxoGua) level may be linked to aberrant DNA methylation of adjacent cytosine and in this way influences carcinogenesis. Therefore, the aim of the present study was to assess a possible link between 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) background level and 5-methylcytosine content in DNA from human leukocytes of healthy subjects (n=105) as well as in patients with colon adenomas (n=39) and carcinomas (n=50). Our results demonstrated statistically significant negative correlation between background level of 8-oxodG and 5-methylcytosine content in DNA isolated from leukocytes of healthy donors (r=-0.3436, p=0.0003). The mean content of 5-methylcytosine was significantly lower, while 8-oxodG level was significantly higher in leukocytes DNA of patients with colon adenomas and carcinomas in comparison with healthy subjects. The mean values for 5-methylcytosine were: 3.59+/-0.173% (healthy subjects), 3.38+/-0.128% (patients with adenomas), 3.40+/-0.208% (colon cancer patients). The mean values of 8-oxodG in DNA were, respectively: 4.67+/-1.276, 5.72+/-1.787, 5.76+/-1.884 8-oxodG per 10(6) dG molecules. DNA from affected tissue (colon) suffered from significant, about 10% reduction in cytosine methylation in comparison with leukocytes of the paired subjects. Our work provides the first in vivo evidence suggesting that increased levels of 8-oxodG in DNA may lead to carcinogenesis not only via mispair/mutagenic potential of the modified base but also through its ability to influence gene expression by affecting DNA methylation.


Assuntos
5-Metilcitosina/metabolismo , Adenoma/metabolismo , Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Idoso , Idoso de 80 Anos ou mais , Citosina/metabolismo , Dano ao DNA , Desoxiguanosina/metabolismo , Feminino , Humanos , Leucócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade
20.
Mutat Res ; 642(1-2): 37-42, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18495177

RESUMO

Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.


Assuntos
Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Fumaça/efeitos adversos , Madeira , Poluentes Atmosféricos/efeitos adversos , DNA Glicosilases/sangue , Humanos , Leucócitos Mononucleares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA