Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 11(8): e1005445, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26244544

RESUMO

Errors in protein synthesis, so-called phenotypic mutations, are orders-of-magnitude more frequent than genetic mutations. Here, we provide direct evidence that alternative protein forms and phenotypic variability derived from translational errors paved the path to genetic, evolutionary adaptations via gene duplication. We explored the evolutionary origins of Saccharomyces cerevisiae IDP3 - an NADP-dependent isocitrate dehydrogenase mediating fatty acids ß-oxidation in the peroxisome. Following the yeast whole genome duplication, IDP3 diverged from a cytosolic ancestral gene by acquisition of a C-terminal peroxisomal targeting signal. We discovered that the pre-duplicated cytosolic IDPs are partially localized to the peroxisome owing to +1 translational frameshifts that bypass the stop codon and unveil cryptic peroxisomal targeting signals within the 3'-UTR. Exploring putative cryptic signals in all 3'-UTRs of yeast genomes, we found that other enzymes related to NADPH production such as pyruvate carboxylase 1 (PYC1) might be prone to peroxisomal localization via cryptic signals. Using laboratory evolution we found that these translational frameshifts are rapidly imprinted via genetic single base deletions occurring within the very same gene location. Further, as exemplified here, the sequences that promote translational frameshifts are also more prone to genetic deletions. Thus, genotypes conferring higher phenotypic variability not only meet immediate challenges by unveiling cryptic 3'-UTR sequences, but also boost the potential for future genetic adaptations.


Assuntos
Evolução Molecular , Isocitrato Desidrogenase/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Mutação da Fase de Leitura , Duplicação Gênica , Dados de Sequência Molecular , Mutação , Peroxissomos/enzimologia , Fenótipo , Transporte Proteico , Saccharomyces cerevisiae/enzimologia
2.
Methods ; 59(3): 270-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23296018

RESUMO

Identifying the list of subunits that make up protein complexes constitutes an important step towards understanding their biological functions. However, such knowledge alone does not reveal the full complexity of protein assemblies, as each subunit can take on multiple forms. Proteins can be post-translationally modified or cleaved, multiple products of alternative splicing can exist, and a single subunit may be encoded by more than one gene. Thus, for a complete description of a protein complex, it is necessary to expose the diversity of its subunits. Adding this layer of information is an important step towards understanding the mechanisms that regulate the activity of protein assemblies. Here, we describe a mass spectrometry-based approach that exposes the array of protein variants that comprise protein complexes. Our method relies on denaturing the protein complex, and separating its constituent subunits on a monolithic column prepared in-house. Following the subunit elution from the column, the flow is split into two fractions, using a Triversa NanoMate robot. One fraction is directed straight into an on-line ESI-QToF mass spectrometer for intact protein mass measurements, while the rest of the flow is fractionated into a 96-well plate for subsequent proteomic analysis. The heterogeneity of subunit composition is then exposed by correlating the subunit sequence identity with the accurate mass. Below, we describe in detail the methodological setting of this approach, its application on the endogenous human COP9 signalosome complex, and the significance of the method for structural mass spectrometry analysis of intact protein complexes.


Assuntos
Espectrometria de Massas/métodos , Complexos Multiproteicos/química , Peptídeo Hidrolases/química , Subunidades Proteicas/química , Complexo do Signalossomo COP9 , Fracionamento Químico , Humanos , Desnaturação Proteica , Subunidades Proteicas/metabolismo , Proteômica/métodos
3.
Cell Rep ; 13(3): 585-598, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26456823

RESUMO

The highly conserved COP9 signalosome (CSN) complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein). We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Complexo do Signalossomo COP9 , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/química , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica
4.
Mol Cell Endocrinol ; 382(2): 781-90, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239648

RESUMO

CGß subunits comprise a unique carboxyl-terminal peptide (CTP) that has multiple O-linked glycans and extends serum half-life of the protein. It has evolved by incorporating a previously untranslated region of the LHß gene into the reading frame. Although CTP-like sequences are encrypted in the LHß genes of several mammals, the CGß subunit developed only in primates and equids. To study this restriction in evolution, we examined whether the cryptic CTP decoded from the bovine LHß gene (boCTP) possesses key characteristics of the human (h) CGß-CTP. The boCTP does not impede several crucial aspects of hormone biosynthesis, but compared to the hCGß-CTP, the stretch lacks O-glycans and determinants for circulatory survival. O-glycan deficiency and the associated incapacity to extend serum half-life is a major drawback of the boCTP. This may explain why LH did not evolve into CG in ruminants and consequently alternative mechanisms evolved to delay luteolysis early in gestation.


Assuntos
Região 3'-Flanqueadora , Gonadotropina Coriônica Humana Subunidade beta/genética , Evolução Molecular , Hormônio Luteinizante/genética , Polissacarídeos/química , Subunidades Proteicas/genética , Sequência de Aminoácidos , Animais , Células CHO , Bovinos , Gonadotropina Coriônica Humana Subunidade beta/química , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Cricetulus , Feminino , Regulação da Expressão Gênica , Meia-Vida , Cavalos , Humanos , Hormônio Luteinizante/química , Hormônio Luteinizante/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polissacarídeos/metabolismo , Gravidez , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA