Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 19(1): 67-79, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931518

RESUMO

The development of endosomal disruptive agents is a major challenge in the field of drug delivery and pharmaceutical chemistry. Current endosomal disruptive agents are composed of polymers, peptides, and nanoparticles and have had limited clinical impact. Alternatives to traditional endosomal disruptive agents are therefore greatly needed. In this report, we introduce a new class of low molecular weight endosomal disruptive agents, termed caged surfactants, that selectively disrupt endosomes via reversible PEGylation under acidic endosomal conditions. The caged surfactants have the potential to address several of the limitations hindering the development of current endosomal disruptive agents, such as high toxicity and low excretion, and are amenable to traditional medicinal chemistry approaches for optimization. In this report, we synthesized three generations of caged surfactants and demonstrated that they can enhance the ability of cationic lipids to deliver mRNA into primary cells. We also show that caged surfactants can deliver siRNA into cells when modified with the RNA-binding dye thiazole orange. We anticipate that the caged surfactants will have numerous applications in pharmaceutical chemistry and drug delivery given their versatility.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Nucleicos/administração & dosagem , Tensoativos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Endossomos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Relação Estrutura-Atividade , Tensoativos/administração & dosagem , Tensoativos/química
2.
Chem Commun (Camb) ; 58(19): 3166-3169, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170593

RESUMO

This article reports the synthesis and characterization of a novel self-immolative linker, based on thiocarbonates, which releases a free thiol upon activation via enzymes. We demonstrate that thiocarbonate self-immolative linkers can be used to detect the enzymes penicillin G amidase (PGA) and nitroreductase (NTR) with high sensitivity using absorption spectroscopy. Paired with modern thiol amplification technology, the detection of PGA and NTR were achieved at concentrations of 160 nM and 52 nM respectively. In addition, the PGA probe was shown to be compatible with both biological thiols and enzymes present in cell lysates.


Assuntos
Nitrorredutases/análise , Penicilina Amidase/análise , Compostos de Sulfidrila/química , Estrutura Molecular , Nitrorredutases/metabolismo , Penicilina Amidase/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA