RESUMO
BACKGROUND: Normothermic machine perfusion (NMP) provides a novel platform to preserve isolated organs in an artificial condition. Our study aimed to explore the interaction between the liver and kidney at an ex vivo organ level by adding a liver to the kidney NMP circuit. METHODS: Porcine kidney and liver obtained from abattoir were subjected to 9 h NMP after suffering 30-min warm ischemia time and 90-min cold ischemia time. The liver-kidney NMP group (n = 5) and the single-kidney NMP group (n = 5) were designed. During the NMP, perfusion parameters, blood gas analysis, and tissue samples were compared. RESULTS: The perfusate of both groups remained stable, and continuous urine production was observed during NMP. In the liver-kidney NMP group, the lactate level was low, while blood urea nitrogen increased and glucose levels decreased. After the NMP, the renal tissue in the liver-kidney group exhibited fewer histological changes such as tubular epithelium vacuolization, along with reduced expression of IL-6, IL-8, IL-1ß, NLRP3, and GSDMD. CONCLUSIONS: Our results indicated that the expression of renal pro-inflammatory factors was reduced in the liver-kidney NMP system.
Assuntos
Fígado , Preservação de Órgãos , Suínos , Animais , Preservação de Órgãos/métodos , Perfusão/métodos , Rim/patologia , Isquemia Quente/métodosRESUMO
BACKGROUND: Acute Kidney Injury (AKI) is defined as a sudden loss of kidney function, which is often caused by drugs, toxins, and infections. The large spectrum of AKI implies diverse pathophysiological mechanisms. In many cases, AKI can be lethal, and kidney replacement therapy is frequently needed. However, current treatments are not satisfying. Developing novel therapies for AKI is essential. Adult stem cells possess regenerative ability and play an important role in medical research and disease treatment. METHODS: In this study, we isolated and characterized a distinct human urine-derived stem cell, which expressed both proximal tubular cell and mesenchymal stem cell genes as well as certain unique genes. RESULTS: It was found that these cells exhibited robust protective effects on tubular cells and anti- inflammatory effects on macrophages in vitro. In an ischemia-reperfusion-induced acute kidney injury NOD-SCID mouse model, transplantation of USCs significantly protected the kidney morphology and functions in vivo. CONCLUSION: In summary, our results highlighted the effectiveness of USCs in protecting from PTC injury and impeding macrophage polarization, as well as the secretion of pro-inflammatory interleukins, suggesting the potential of USCs as a novel cell therapy in AKI.