Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 101, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262939

RESUMO

BACKGROUND: SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS: Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION: Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.


Assuntos
Arabidopsis , Beta vulgaris , Humanos , Resposta ao Choque Frio , Filogenia , Antioxidantes , Açúcares , Fatores de Transcrição
2.
BMC Plant Biol ; 24(1): 113, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365619

RESUMO

BACKGROUND: The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS: In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS: In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.


Assuntos
Genes de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Pisum sativum/genética , Filogenia , Família Multigênica , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Hormônios , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
3.
Plant Biotechnol J ; 22(5): 1206-1223, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38062934

RESUMO

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.


Assuntos
Fagopyrum , Rutina , Humanos , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Estudo de Associação Genômica Ampla , Hidrólise , Simulação de Acoplamento Molecular , Multiômica , Flavonoides/metabolismo , Hidrolases/metabolismo
4.
BMC Genomics ; 23(1): 389, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596144

RESUMO

BACKGROUND: Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited.  RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS: In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.


Assuntos
Setaria (Planta) , Regulação da Expressão Gênica de Plantas , Humanos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
5.
BMC Genomics ; 23(1): 549, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918632

RESUMO

BACKGROUND: Transcription factors (TFs) play important roles in plants. Among the major TFs, GATA plays a crucial role in plant development, growth, and stress responses. However, there have been few studies on the GATA gene family in foxtail millet (Setaria italica). The release of the foxtail millet reference genome presents an opportunity for the genome-wide characterization of these GATA genes. RESULTS: In this study, we identified 28 GATA genes in foxtail millet distributed on seven chromosomes. According to the classification method of GATA members in Arabidopsis, SiGATA was divided into four subfamilies, namely subfamilies I, II, III, and IV. Structural analysis of the SiGATA genes showed that subfamily III had more introns than other subfamilies, and a large number of cis-acting elements were abundant in the promoter region of the SiGATA genes. Three tandem duplications and five segmental duplications were found among SiGATA genes. Tissue-specific results showed that the SiGATA genes were mainly expressed in foxtail millet leaves, followed by peels and seeds. Many genes were significantly induced under the eight abiotic stresses, such as SiGATA10, SiGATA16, SiGATA18, and SiGATA25, which deserve further attention. CONCLUSIONS: Collectively, these findings will be helpful for further in-depth studies of the biological function of SiGATA, and will provide a reference for the future molecular breeding of foxtail millet.


Assuntos
Arabidopsis , Setaria (Planta) , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico
6.
New Phytol ; 235(5): 1927-1943, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35701896

RESUMO

Golden buckwheat (Fagopyrum dibotrys or Fagopyrum cymosum) and Tartary buckwheat (Fagopyrum tataricum) belong to the Polygonaceae and the Fagopyrum genus is rich in flavonoids. Golden buckwheat is a wild relative of Tartary buckwheat, yet golden buckwheat is a traditional Chinese herbal medicine and Tartary buckwheat is a food crop. The genetic basis of adaptive divergence between these two buckwheats is poorly understood. Here, we assembled a high-quality chromosome-level genome of golden buckwheat and found a one-to-one syntenic relationship with the chromosomes of Tartary buckwheat. Two large inversions were identified that differentiate golden buckwheat and Tartary buckwheat. Metabolomic and genetic comparisons of golden buckwheat and Tartary buckwheat indicate an amplified copy number of FdCHI, FdF3H, FdDFR, and FdLAR gene families in golden buckwheat, and a parallel increase in medicinal flavonoid content. Resequencing of 34 wild golden buckwheat accessions across the two morphologically distinct ecotypes identified candidate genes, including FdMYB44 and FdCRF4, putatively involved in flavonoid accumulation and differentiation of plant architecture, respectively. Our comparative genomic study provides abundant genomic resources of genomic divergent variation to improve buckwheat with excellent nutritional and medicinal value.


Assuntos
Fagopyrum , Ecótipo , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361858

RESUMO

ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.


Assuntos
Arabidopsis , Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Pressão Osmótica , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Filogenia
8.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293290

RESUMO

GATA is a transcription factor that exerts a vital function in plant growth and development, physiological metabolism, and environmental responses. However, the GATA gene family has rarely been studied in Tartary buckwheat since the completion of its genome. This study used bioinformatics methods to identify GATA genes of Tartary buckwheat and to analyze their subfamily classification, structural composition, and developmental evolution, as well as to discuss the expression patterns of FtGATA genes in different subfamilies. The twenty-eight identified FtGATA genes in the Tartary buckwheat genome were divided into four subfamilies and distributed on eight chromosomes. One pair of tandem repeat genes and eight pairs of fragments were found in chromosome mapping. Spatiotemporal expression patterns of eight FtGATA genes in different subfamilies indicated that the FtGATA gene family has regulatory roles in tissue specificity, fruit development, abiotic stress, and hormonal responses. This study creates a theoretical and scientific foundation for further research on the evolutionary relationship and biological function of FtGATA.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142630

RESUMO

We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.


Assuntos
Fagopyrum , Antioxidantes/metabolismo , Clorofila A/metabolismo , Fagopyrum/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Água/metabolismo
10.
BMC Genomics ; 22(1): 778, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717536

RESUMO

BACKGROUND: Members of the basic helix-loop-helix (bHLH) transcription factor family perform indispensable functions in various biological processes, such as plant growth, seed maturation, and abiotic stress responses. However, the bHLH family in foxtail millet (Setaria italica), an important food and feed crop, has not been thoroughly studied. RESULTS: In this study, 187 bHLH genes of foxtail millet (SibHLHs) were identified and renamed according to the chromosomal distribution of the SibHLH genes. Based on the number of conserved domains and gene structure, the SibHLH genes were divided into 21 subfamilies and two orphan genes via phylogenetic tree analysis. According to the phylogenetic tree, the subfamilies 15 and 18 may have experienced stronger expansion in the process of evolution. Then, the motif compositions, gene structures, chromosomal spread, and gene duplication events were discussed in detail. A total of sixteen tandem repeat events and thirty-eight pairs of segment duplications were identified in bHLH family of foxtail millet. To further investigate the evolutionary relationship in the SibHLH family, we constructed the comparative syntenic maps of foxtail millet associated with representative monocotyledons and dicotyledons species. Finally, the gene expression response characteristics of 15 typical SibHLH genes in different tissues and fruit development stages, and eight different abiotic stresses were analysed. The results showed that there were significant differences in the transcription levels of some SibHLH members in different tissues and fruit development stages, and different abiotic stresses, implying that SibHLH members might have different physiological functions. CONCLUSIONS: In this study, we identified 187 SibHLH genes in foxtail millet and further analysed the evolution and expression patterns of the encoded proteins. The findings provide a comprehensive understanding of the bHLH family in foxtail millet, which will inform further studies on the functional characteristics of SibHLH genes.


Assuntos
Setaria (Planta) , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
11.
BMC Genomics ; 22(1): 415, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090335

RESUMO

BACKGROUND: Basic helix-loop-helix (bHLH) is a superfamily of transcription factors that is widely found in plants and animals, and is the second largest transcription factor family in eukaryotes after MYB. They have been shown to be important regulatory components in tissue development and many different biological processes. However, no systemic analysis of the bHLH transcription factor family has yet been reported in Sorghum bicolor. RESULTS: We conducted the first genome-wide analysis of the bHLH transcription factor family of Sorghum bicolor and identified 174 SbbHLH genes. Phylogenetic analysis of SbbHLH proteins and 158 Arabidopsis thaliana bHLH proteins was performed to determine their homology. In addition, conserved motifs, gene structure, chromosomal spread, and gene duplication of SbbHLH genes were studied in depth. To further infer the phylogenetic mechanisms in the SbbHLH family, we constructed six comparative syntenic maps of S. bicolor associated with six representative species. Finally, we analyzed the gene-expression response and tissue-development characteristics of 12 typical SbbHLH genes in plants subjected to six different abiotic stresses. Gene expression during flower and fruit development was also examined. CONCLUSIONS: This study is of great significance for functional identification and confirmation of the S. bicolor bHLH superfamily and for our understanding of the bHLH superfamily in higher plants.


Assuntos
Sorghum , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genoma de Planta , Filogenia , Sorghum/genética , Estresse Fisiológico/genética
12.
BMC Genomics ; 22(1): 509, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229611

RESUMO

BACKGROUND: GRAS, an important family of transcription factors, have played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. Since the sequencing of the sorghum genome, a plethora of genetic studies were mainly focused on the genomic information. The indepth identification or genome-wide analysis of GRAS family genes, especially in Sorghum bicolor, have rarely been studied. RESULTS: A total of 81 SbGRAS genes were identified based on the S. bicolor genome. They were named SbGRAS01 to SbGRAS81 and grouped into 13 subfamilies (LISCL, DLT, OS19, SCL4/7, PAT1, SHR, SCL3, HAM-1, SCR, DELLA, HAM-2, LAS and OS4). SbGRAS genes are not evenly distributed on the chromosomes. According to the results of the gene and motif composition, SbGRAS members located in the same group contained analogous intron/exon and motif organizations. We found that the contribution of tandem repeats to the increase in sorghum GRAS members was slightly greater than that of fragment repeats. By quantitative (q) RT-PCR, the expression of 13 SbGRAS members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. We further investigated the relationship between DELLA genes, GAs and grain development in S. bicolor. The paclobutrazol treatment significantly increased grain weight, and affected the expression levels of all DELLA subfamily genes. SbGRAS03 is the most sensitive to paclobutrazol treatment, but also has a high response to abiotic stresses. CONCLUSIONS: Collectively, SbGRAs play an important role in plant development and response to abiotic stress. This systematic analysis lays the foundation for further study of the functional characteristics of GRAS genes of S. bicolor.


Assuntos
Sorghum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
BMC Plant Biol ; 21(1): 508, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732123

RESUMO

BACKGROUND: GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. RESULTS: In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. CONCLUSIONS: Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.


Assuntos
Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Setaria (Planta)/genética , Fatores de Transcrição/genética
14.
Plant Dis ; 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433314

RESUMO

Tartary buckwheat (Fagopyrum tataricum, Polygonaceae) is an annual plant originating in Southwest China. It has a short growth cycle, barren soil tolerance, and strong stress resistance (Zhang et al. 2021). Because of its high content of proteins, starch, trace elements, phenols, and dietary fiber, Tartary buckwheat is beneficial to the human body and hence has received widespread attention (Joshi et al. 2019; Dc ja, B, et al. 2020). In the period from September to November 2020, a diseased plant infected with gray mold was found among M2 generation plants treated using ethyl methanesulfonate (EMS) in a location with potted Tartary buckwheat plants in Huaxi District, Guiyang City, Guizhou Province, China. The diseased plant started to show symptoms during the initial flowering stage; water-soaked spots appeared at first, that the spots increased in size and turned into light brown patches, with the leaf edges scorched brown. In severe cases, the leaves turned yellow, the diseased spots became dry, and finally the leaves necrotic (Figure 1A). Among the leaves that showed disease symptoms, severely susceptible leaves were selected; a piece of tissue (2×2 mm) was removed at the junction of the diseased and healthy tissues. The tissue was then soaked in 75% ethanol for 2 to 3 s, transferred to 1% sodium hypochlorite solution and soaked for 3 min, rinsed three times with sterile water, and placed on sterilized filter paper to dry. Sterile tweezers were used to transfer the tissue blocks to Potato Dextrose Agar medium (Bio-Rad Ltd. Com, USA) containing a Streptomyces-Penicillium mixture (100 µg/mL), and they were incubated on this medium for 7 to 10 days at 25°C and 70% humidity under 16 h light and 8 h dark conditions. The colonies were white at the early stages, with developed aerial hyphae; subsequently, they gradually turned gray-green (Figure 1B). In the later stages, the back of the colony was black and piles of conidia could be seen (Figure 1C). The conidia are scattered, which were colorless and transparent, fusiform or fusiform, with a size of 8.02-11.13 µm×2.06-3.22 µm (average=9.51 µm×2.69 µm, n=50) (Figure 1D). Based on their morphological characteristics, These cultural and morphological characteristics were consistent with the descriptions of as B. dothidea (Fan et al. 2021). The ITS1/ITS4 (Mills et al. 1992), Bt-2a/Bt-2b primers (Glass and Donaldson 1995), and EF1-728F/EF1-986R (Slippers et al. 2004) were amplified and sequenced to analyze the ITS region, ß-tubulin genes translation elongation factor 1-α (TEF1-α), and translation elongation factor 1-α (TEF1-α), respectively. According to BLAST search in GenBank, the sequences of ITS (MZ326853), TUB2 (MZ399162) and TEF1-α (MZ399163) had 99.40%, 100% and 100% similarity to sequences NR111146.1, AY236927.1, and AY236898.1 of B. dothidea ex-type strain CMW8000, respectively. The three nucleotide sequences were concatenated together, and MEGA-X (with the neighbor-joining method) with 1,000 bootstraps was used to construct a phylogenetic tree. The results showed that our isolate was closely related to B. dothidea (Figure 2). Healthy Tartary buckwheat from the M2 generation was used for the pathogenicity test. Disinfect with 75% alcohol and 1×105 mL-1 of spore suspension was sprayed on the leaves. Each treatment included three plants, and it was repeated three times with sterile water as control. The treatments were kept in a houseat25°C for 24 h, then transferred it to the natural environment of 22℃ to 28℃,and sterile water was sprayed every morning and evening to keep the leaves moist. After 10 days, the symptoms seen in the field appeared on the treated plants (Figure 1E), but the control plants did not show any symptoms (Figure 1F). The diseased parts of the leaves were isolated and cultured again, and the isolates were consistent with the original inoculum. Thus, the study conformed to Koch's postulates. B. dothidea is a fungus with no host preference in the genus Botryosphaeria (Botryosphaeriaceae, Botryosphaeriales). It can cause canker, leaf spots, trunk diseases, fruit rot and die-back of many important wood plants all over the world (Marsberg et al.2017). Recently, it was reported that B. dothidea caused soybean canker in China (Chen et al.2021), but there have been no reports of B. dothidea causing Tartary buckwheat gray mold. To the best of our knowledge, this is the first report of B. dothidea causing gray mold on Tartary buckwheat. This finding will provide a basis for the prevention and treatment of Tartary buckwheat gray mold.

16.
Pestic Biochem Physiol ; 160: 49-57, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519257

RESUMO

A novel chymotrypsin inhibitor, named ClCI, was purified from coix seed (Coix lacryma-jobi L.) by aqueous two-phase extraction, chymotrypsin-Sepharose 4B affinity chromatography and centrifugal ultrafiltration. ClCI was a 7.9 kDa competitive inhibitor with pI 6.54. The inhibition constants (Ki) for bovine pancreatic chymotrypsin and bacterial subtilisin were 1.27 × 10-10 M and 1.57 × 10-9 M respectively. ClCI had no inhibitory activity against bovine trypsin and porcine elastase. ClCI had wide pH stability and good heat resistance. It can maintain >90% inhibition activity against chymotrypsin at 20-80 °C for 1 h. The primary structure of ClCI was highly similar (57%-92%) to those of several inhibitors belonging to the Gramineae crop potato protease inhibitor- I superfamily and showed the typical sequence motif of the protease inhibitor of the seed storage protein group. ClCI (12.5 mg) inhibited mycelial growth of the phytopathogenic fungi Mycosphaerella melonis, Helminthosporium turcicum, Alternaria solani, Phytophthora capsici, Isariopsis griseola, and Colletotrichum gloeosporioides, and caused 89% inhibition of the proteases from spore germination of plant-pathogenic fungi. The results of the present study indicate that ClCI had biotechnological potential as an alternative agent to combat the important phytopathogenic fungi.


Assuntos
Antifúngicos/farmacologia , Quimotripsina/antagonistas & inibidores , Coix/química , Inibidores da Tripsina/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Coix/embriologia , Concentração de Íons de Hidrogênio , Sementes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inibidores da Tripsina/química
17.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137463

RESUMO

Jasmonic acid (JA) and its precursors and dervatives, referred as jasmonates (JAs) are important molecules in the regulation of many physiological processes in plant growth and development, and especially the mediation of plant responses to biotic and abiotic stresses. JAs biosynthesis, perception, transport, signal transduction and action have been extensively investigated. In this review, we will discuss the initiation of JA signaling with a focus on environmental signal perception and transduction, JA biosynthesis and metabolism, transport of signaling molecules (local transmission, vascular bundle transmission, and airborne transportation), and biological function (JA signal receptors, regulated transcription factors, and biological processes involved).


Assuntos
Ciclopentanos/metabolismo , Magnoliopsida/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Magnoliopsida/fisiologia , Estresse Fisiológico
18.
Pestic Biochem Physiol ; 142: 141-147, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29107237

RESUMO

A novel chymotrypsin inhibitor, which detected in the seed of wild emmer wheat (Triticum dicoccoides), was purified by ion-exchange chromatography, affinity chromatography and Ultracentrifugation. On the basis of its specificity, this inhibitor was named WeCI (wild emmer chymotrypsin inhibitor). SDS-PAGE analysis displayed that the purified WeCI is a single chain polypeptide with a molecular weight of approximately 13kDa. The inhibition constants (Ki) for amylase and bovine pancreatic chymotrypsin were 1.12×10-9M and 2.41×10-9M, respectively. Automated sequencing and mass spectrometry analyses revealed that WeCI is a neutral monomeric protein consisting of 119 residues. In vitro, WeCI strongly suppressed bovine pancreatic chymotrypsin as well as chymotrypsin-like activities separated from the midgut of the beet armyworm Spodoptera exigua. No inhibitory activities were found against bovine pancreatic trypsin, bacterial subtilisin, or porcine pancreatic elastase. The primary structure of WeCI was markedly similar (46-95%) to those of several proteins belonging to the wheat crop chymotrypsin/α-amylase inhibitor superfamily and displayed the typical sequence motif of the α-amylase inhibitor-seed storage protein group. WeCI significantly inhibited the growth and development of Spodoptera exigua, dependent on inhibitor concentration. WeCI significantly increased the mortality rate of Spodoptera exigua and caused a significant decrease in its fertility.


Assuntos
Quimotripsina/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Spodoptera/efeitos dos fármacos , Triticum/química , Animais , Quimotripsina/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Israel , Elastase Pancreática/antagonistas & inibidores , Elastase Pancreática/química , Extratos Vegetais/farmacologia , Sementes/química , Spodoptera/química , Spodoptera/enzimologia , Spodoptera/crescimento & desenvolvimento , Suínos
19.
Mol Biol Rep ; 42(1): 209-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25258121

RESUMO

The gene of the trypsin inhibitor of tartary buckwheat (Fagopyrum tataricum) was successfully cloned, expressed in Pichia pastoris and tested for regulatory effects on insect growth. The three significant factors were optimized by single-factor experiments and central composite design in response surface methodology. Proteins were efficiently expressed at levels of 489.6-527.4 U/mg in shaken flasks. The trypsin inhibitor from tartary buckwheat (FtTI) was purified by affinity chromatography and centrifugal ultrafiltration. The purified FtTI efficiently inhibited trypsin protease activity by competitive inhibition with a Ki value 1.5 nM. The molecular mass of the purified protein was approximately 13.8 kDa. FtTI had a higher toxic killing effect on Mamestra brassicae larvae. The median lethal concentration for the larvae was 15 µg/mL.


Assuntos
Fagopyrum/química , Mariposas/efeitos dos fármacos , Pichia/metabolismo , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/toxicidade , Análise de Variância , Animais , Eletroforese em Gel de Poliacrilamida , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Análise de Regressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inibidores da Tripsina/metabolismo
20.
Sci Total Environ ; 922: 171333, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423325

RESUMO

Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.


Assuntos
Microbiota , Zeolitas , Desnitrificação , Amônia , Áreas Alagadas , Nitrogênio , Nitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA