RESUMO
Satellite cells are a heterogeneous population of stem and progenitor cells that are required for the growth, maintenance and regeneration of skeletal muscle. The transcription factors paired-box 3 (PAX3) and PAX7 have essential and overlapping roles in myogenesis. PAX3 acts to specify embryonic muscle precursors, whereas PAX7 enforces the satellite cell myogenic programme while maintaining the undifferentiated state. Recent experiments have suggested that PAX7 is dispensable in adult satellite cells. However, these findings are controversial, and the issue remains unresolved.
Assuntos
Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Adulto , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Crescimento e Desenvolvimento/genética , Crescimento e Desenvolvimento/fisiologia , Humanos , Hipertrofia , Modelos Biológicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/fisiologia , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Cicatrização/genética , Cicatrização/fisiologiaRESUMO
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Assuntos
Células-Tronco Adultas/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Nicho de Células-Tronco , Células-Tronco Adultas/patologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Desenvolvimento Muscular/genética , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Regeneração/genética , Células Satélites de Músculo Esquelético/patologiaRESUMO
In skeletal myogenesis, the transcription factor MyoD activates distinct transcriptional programs in progenitors compared to terminally differentiated cells. Using ChIP-Seq and gene expression analyses, we show that in primary myoblasts, Snail-HDAC1/2 repressive complex binds and excludes MyoD from its targets. Notably, Snail binds E box motifs that are G/C rich in their central dinucleotides, and such sites are almost exclusively associated with genes expressed during differentiation. By contrast, Snail does not bind the A/T-rich E boxes associated with MyoD targets in myoblasts. Thus, Snai1-HDAC1/2 prevent MyoD occupancy on differentiation-specific regulatory elements, and the change from Snail to MyoD binding often results in enhancer switching during differentiation. Furthermore, we show that a regulatory network involving myogenic regulatory factors (MRFs), Snai1/2, miR-30a, and miR-206 acts as a molecular switch that controls entry into myogenic differentiation. Together, these results reveal a regulatory paradigm that directs distinct gene expression programs in progenitors versus terminally differentiated cells.
Assuntos
Elementos Facilitadores Genéticos/fisiologia , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Camundongos , Dados de Sequência Molecular , Proteína MyoD/química , Proteína MyoD/genética , Mioblastos Esqueléticos/citologia , Cultura Primária de Células , Ligação Proteica/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/fisiologiaRESUMO
Muscle-specific transcription factor MyoD orchestrates the myogenic gene expression program by binding to short DNA motifs called E-boxes within myogenic cis-regulatory elements (CREs). Genome-wide analyses of MyoD cistrome by chromatin immnunoprecipitation sequencing shows that MyoD-bound CREs contain multiple E-boxes of various sequences. However, how E-box numbers, sequences and their spatial arrangement within CREs collectively regulate the binding affinity and transcriptional activity of MyoD remain largely unknown. Here, by an integrative analysis of MyoD cistrome combined with genome-wide analysis of key regulatory histones and gene expression data we show that the affinity landscape of MyoD is driven by multiple E-boxes, and that the overall binding affinity-and associated nucleosome positioning and epigenetic features of the CREs-crucially depend on the variant sequences and positioning of the E-boxes within the CREs. By comparative genomic analysis of single nucleotide polymorphism (SNPs) across publicly available data from 17 strains of laboratory mice, we show that variant sequences within the MyoD-bound motifs, but not their genome-wide counterparts, are under selection. At last, we show that the quantitative regulatory effect of MyoD binding on the nearby genes can, in part, be predicted by the motif composition of the CREs to which it binds. Taken together, our data suggest that motif numbers, sequences and their spatial arrangement within the myogenic CREs are important determinants of the cis-regulatory code of myogenic CREs.
Assuntos
Elementos E-Box/genética , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética , Animais , Sequência de Bases/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Expressão Gênica/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Camundongos , Desenvolvimento Muscular/fisiologia , Motivos de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genéticaRESUMO
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/genética , Regeneração/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Fatores de Regulação Miogênica/classificação , FilogeniaRESUMO
Satellite cells (SCs) sustain muscle growth and empower adult skeletal muscle with vigorous regenerative abilities. Here, we report that EZH2, the enzymatic subunit of the Polycomb-repressive complex 2 (PRC2), is expressed in both Pax7+/Myf5â» stem cells and Pax7+/Myf5+ committed myogenic precursors and is required for homeostasis of the adult SC pool. Mice with conditional ablation of Ezh2 in SCs have fewer muscle postnatal Pax7+ cells and reduced muscle mass and fail to appropriately regenerate. These defects are associated with impaired SC proliferation and derepression of genes expressed in nonmuscle cell lineages. Thus, EZH2 controls self-renewal and proliferation, and maintains an appropriate transcriptional program in SCs.
Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Imunoprecipitação da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Citometria de Fluxo , Imunofluorescência , Histona-Lisina N-Metiltransferase/genética , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Camundongos , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Complexo Repressor Polycomb 2RESUMO
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles.
Assuntos
Envelhecimento/fisiologia , Linhagem da Célula/fisiologia , Modelos Biológicos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Sinais (Psicologia) , Humanos , Transdução de Sinais/fisiologiaRESUMO
This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.
Assuntos
Envelhecimento/patologia , Proteínas Morfogenéticas Ósseas/uso terapêutico , Fatores de Diferenciação de Crescimento/uso terapêutico , Doenças Musculares/tratamento farmacológico , Envelhecimento/sangue , Animais , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/toxicidade , Caquexia/induzido quimicamente , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/deficiência , Fatores de Diferenciação de Crescimento/farmacologia , Fatores de Diferenciação de Crescimento/toxicidade , Coração/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos Endogâmicos C57BL , Modelos Animais , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Músculos/patologia , Doenças Musculares/fisiopatologia , Miocárdio/patologia , Miostatina/fisiologia , Miostatina/uso terapêutico , Miostatina/toxicidade , Parabiose , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/toxicidade , Regeneração/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais , Método Simples-Cego , Proteína Smad2/fisiologia , Proteína Smad3/fisiologiaRESUMO
Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein.
Assuntos
Caspase 3/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinases/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/metabolismo , Regeneração , Homologia de Sequência de Aminoácidos , Células-Tronco/citologiaRESUMO
Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment.
Assuntos
Músculo Esquelético/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Imuno-Histoquímica , Camundongos , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologiaRESUMO
Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.
Assuntos
Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Western Blotting , Feminino , Imunofluorescência , Camundongos , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , TamoxifenoRESUMO
Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3' UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1(-/-)a2(+/-) ) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1(-/-)a2(+/-) mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo.
Assuntos
Tecido Adiposo Marrom/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , MicroRNAs/metabolismo , Termogênese/genética , Termogênese/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.
Assuntos
Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Nicho de Células-Tronco , Animais , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Células Satélites de Músculo Esquelético/fisiologiaRESUMO
Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.
Assuntos
Músculo Esquelético/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Comunicação Celular , Humanos , Células Satélites de Músculo Esquelético/citologia , Nicho de Células-TroncoRESUMO
Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.
Assuntos
Distrofia Muscular Animal/tratamento farmacológico , Proteínas Wnt/uso terapêutico , Animais , Eletroquimioterapia , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/fisiologiaRESUMO
In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.
Assuntos
Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética/genética , Fase G1/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Processamento de Proteína Pós-Traducional/genética , Fase S/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genéticaRESUMO
Activation of the canonical Wnt signaling pathway synergizes with leukemia inhibitory factor (LIF) to maintain pluripotency of mouse embryonic stem cells (mESCs). However, in the absence of LIF, Wnt signaling is unable to maintain ESCs in the undifferentiated state. To investigate the role of canonical Wnt signaling in pluripotency and lineage specification, we expressed Wnt3a in mESCs and characterized them in growth and differentiation. We found that activated canonical Wnt signaling induced the formation of a reversible metastable primitive endoderm state in mESC. Upon subsequent differentiation, Wnt3a-stimulated mESCs gave rise to large quantities of visceral endoderm. Furthermore, we determined that the ability of canonical Wnt signaling to induce a metastable primitive endoderm state was mediated by Tbx3. Our data demonstrates a specific role for canonical Wnt signaling in promoting pluripotency while at the same time priming cells for subsequent differentiation into the primitive endoderm lineage.
Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Animais , Western Blotting , Linhagem Celular , Citometria de Fluxo , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Proteína Wnt3/genética , Proteína Wnt3/metabolismoRESUMO
Research focusing on the canonical adult myogenic progenitor, the skeletal muscle satellite cell, is still an ever-growing field 46 years from their initial description. Recent publications revealed numerous new aspects of satellite cell biology, starting from their developmental life to their role as the principal self-renewing myogenic stem cell in adult skeletal muscle and finally their loss during aging. The myogenic potential of satellite cells is under the molecular control of specific paired-box and bHLH transcription factors whose tightly orchestrated balance accounts for an effective skeletal muscle regeneration. New reports also demonstrate satellite cells relationships with blood vessels and the high myogenic potential of stem cell subsets related to both lineages.
Assuntos
Desenvolvimento Muscular , Células Satélites de Músculo Esquelético/citologia , Adulto , Diferenciação Celular , Linhagem da Célula , Humanos , Regeneração , Células Satélites de Músculo Esquelético/metabolismoRESUMO
Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.
Assuntos
Adipócitos Marrons/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos Marrons/citologia , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/citologia , Animais , Células COS , Diferenciação Celular/genética , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Masculino , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Fator Regulador Miogênico 5/genética , PPAR gama/genética , Fatores de Transcrição/genéticaRESUMO
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.