Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 15(27): 6619-25, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19472232

RESUMO

Orotidine-5'-monophosphate decarboxylase (OMPD) catalyzes the decarboxylation of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate (UMP) in an extremely proficient manner. The reaction does not require any cofactors and proceeds by an unknown mechanism. In addition to decarboxylation, OMPD is able to catalyze other reactions. We show that several C6-substituted UMP derivatives undergo hydrolysis or substitution reactions that depend on a lysine residue (Lys314) in the OMPD active site. 6-Cyano-UMP is converted to UMP, and UMP derivatives with good leaving groups inhibit OMPD by a suicide mechanism in which Lys314 covalently binds to the substrate. These non-classical reactivities of human OMPD were characterized by cocrystallization and freeze-trapping experiments with wild-type OMPD and two active-site mutants by using substrate and inhibitor nucleotides. The structures show that the C6-substituents are not coplanar with the pyrimidine ring. The extent of this substrate distortion is a function of the substituent geometry. Structure-based mechanisms for the reaction of 6-substituted UMP derivatives are extracted in accordance with results from mutagenesis, mass spectrometry, and OMPD enzyme activity. The Lys314-based mechanisms explain the chemodiversity of OMPD, and offer a strategy to design mechanism-based inhibitors that could be used for antineoplastic purposes for example.


Assuntos
Lisina , Orotidina-5'-Fosfato Descarboxilase , Animais , Catálise , Humanos , Hidrólise , Lisina/química , Lisina/genética , Lisina/metabolismo , Methanobacterium/enzimologia , Modelos Moleculares , Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Plasmodium falciparum/enzimologia , Estereoisomerismo , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/metabolismo
2.
Bioorg Med Chem Lett ; 19(9): 2595-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19328688

RESUMO

According to the docking studies and the analysis of a co-crystal structure of GW4064 with FXR, a series of 3-aryl heterocyclic isoxazole analogs were designed and synthesized. N-Oxide pyridine analog (7b) was identified as a promising FXR agonist with potent binding affinity and good efficacy, supporting our hypothesis that through an additional hydrogen bond interaction between the pyridine substituent of isoxazole analogs and Tyr373 and Ser336 of FXR, binding affinity and functional activity could be improved.


Assuntos
Química Farmacêutica/métodos , Isoxazóis/síntese química , Sítios de Ligação , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Isoxazóis/química , Isoxazóis/farmacologia , Ligantes , Modelos Químicos , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/química , Serina/química , Tirosina/química
3.
FEBS J ; 282(17): 3262-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077311

RESUMO

C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O2) and consumes 1 mol O2 per mol FGly formed. For maximal activity FGE requires an O2 concentration of 9% (105 µM). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O2 -dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O2 without involvement of any activating cofactor.


Assuntos
Alanina/análogos & derivados , Glicina/análogos & derivados , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Sulfatases/metabolismo , Alanina/química , Alanina/metabolismo , Animais , Baculoviridae/genética , Biocatálise , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Ditiotreitol/química , Ensaios Enzimáticos , Expressão Gênica , Glicina/química , Glicina/metabolismo , Humanos , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxigênio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Sulfatases/química , Sulfatases/genética
5.
Proc Natl Acad Sci U S A ; 103(8): 2576-81, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16477020

RESUMO

Conjugated linoleic acids (CLAs) affect body fat gain, carcinogenesis, insulin resistance, and lipid peroxidation in mammals. Several isomers of CLA exist, of which the (9Z, 11E) and (10E, 12Z) isomers have beneficial effects on human metabolism but are scarce in foods. Bacterial polyunsaturated fatty acid isomerases are promising biotechnological catalysts for CLA production. We describe six crystal structures of the Propionibacterium acnes polyunsaturated fatty acid isomerase PAI in apo- and product-bound forms. The three-domain flavoprotein has previously undescribed folds outside the FAD-binding site. Conformational changes in a hydrophobic channel toward the active site reveal a unique gating mechanism for substrate specificity. The geometry of the substrate-binding site explains the length preferences for C18 fatty acids. A catalytic mechanism for double-bond isomerization is formulated that may be altered to change substrate specificity for syntheses of rare CLAs from easily accessible precursors.


Assuntos
Isomerases de Ligação Dupla Carbono-Carbono/química , Ácidos Graxos Insaturados/química , Propionibacterium acnes/enzimologia , Sequência de Aminoácidos , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Catálise , Cristalografia , Ácidos Graxos Insaturados/metabolismo , Isomerismo , Dados de Sequência Molecular , Conformação Proteica , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 103(1): 81-6, 2006 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-16368756

RESUMO

The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.


Assuntos
Alanina/análogos & derivados , Glicina/análogos & derivados , Modelos Moleculares , Sulfatases/metabolismo , Alanina/biossíntese , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cristalização , Ativação Enzimática/fisiologia , Glicina/biossíntese , Humanos , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Sulfatases/química
7.
Cell ; 121(4): 541-552, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15907468

RESUMO

Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.


Assuntos
Cisteína/análogos & derivados , Glicina/análogos & derivados , Glicina/biossíntese , Esfingolipidoses/metabolismo , Sulfatases/química , Sulfatases/metabolismo , Alanina/análogos & derivados , Alanina/biossíntese , Alanina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Glicina/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação de Sentido Incorreto/fisiologia , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxigênio/metabolismo , Estrutura Secundária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Esfingolipidoses/genética , Sulfatases/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA