Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3166-3177.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905736

RESUMO

Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Rifamicinas , Tuberculose , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Tuberculose/microbiologia
2.
Proc Natl Acad Sci U S A ; 117(1): 629-634, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871194

RESUMO

Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/fisiologia , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Lincosamidas/farmacologia , Lincosamidas/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Mutação , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Domínios Proteicos/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
3.
Antimicrob Agents Chemother ; 65(11): e0118421, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460298

RESUMO

Mycobacterium abscessus has emerged as a successful pathogen owing to its intrinsic drug resistance. Macrolide and lincosamide antibiotics share overlapping binding sites within the ribosome and common resistance pathways. Nevertheless, while M. abscessus is initially susceptible to macrolides, they are completely resistant to the lincosamide antibiotics. Here, we have used RNA sequencing to determine the changes in gene expression in M. abscessus upon exposure to the lincosamide, clindamycin (CLY). We show that Mab_1846, encoding a putative ARE-ABCF protein, was upregulated upon exposure to macrolides and lincosamides but conferred resistance to CLY alone. A Mycobacterium smegmatis homologue of Mab_1846, Ms_5102, was similarly found to be required for CLY resistance in M. smegmatis. We demonstrate that Ms5102 mediates CLY resistance by directly interacting with the ribosomes and protecting it from CLY inhibition. Additional biochemical characterization showed that ribosome binding is not nucleotide dependent, but ATP hydrolysis is required for dissociation of Ms5102 from the ribosome as well as for its ability to confer CLY resistance. Finally, we show that in comparison to the macrolides, CLY is a potent inducer of Mab_1846 and the whiB7 regulon, such that exposure of M. abscessus to very low antibiotic concentrations induces a heightened expression of erm41, hflX, and Mab_1846, which likely function together to result in a particularly antibiotic-resistant state.


Assuntos
Mycobacterium abscessus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Mycobacterium abscessus/genética , Ribossomos/genética
4.
Appl Environ Microbiol ; 87(21): e0110821, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34406831

RESUMO

Transcriptional reporters are reliable and time-tested tools to study gene regulation. In Staphylococcus aureus, ß-galactosidase (lacZ)-based genetic screens are not widely used because of the necessity of selectable markers for strain construction and the production of staphyloxanthin pigment, which obfuscates results. We describe a series of vectors that allow for markerless insertion of codon-optimized lacZ-based transcriptional reporters. The vectors code for different ribosomal binding sites, allowing for tailored lacZ expression. A ΔcrtM::kanR deletion insertion mutant was constructed that prevents the synthesis of staphyloxanthin, thereby permitting blue-white screening without the interference of carotenoid production. We demonstrate the utility of these vectors to monitor aerobic and anaerobic transcriptional activities. For the latter, we describe the use of a ferrocyanide-ferricyanide redox system [Fe(CN)63-/4-] permitting blue-white screening in the absence of oxygen. We also describe additional reporter systems and methods for monitoring transcriptional activity during anaerobic culture, including an FAD-binding fluorescent protein (EcFbFP), alpha-hemolysin (hla), or lipase (geh). The systems and methods described are compatible with vectors utilized to create and screen high-density transposon mutant libraries. IMPORTANCE Staphylococcus aureus is a human pathogen and a leading cause of infectious disease-related illness and death worldwide. For S. aureus to successfully colonize and invade host tissues, it must tightly control the expression of genes encoding virulence factors. Oxygen tension varies greatly at infection sites, and many abscesses are devoid of oxygen. In this study, we have developed novel tools and methods to study how and when S. aureus alters transcription of genes. A key advantage of these methods and tools is that they can be utilized in the presence and absence of oxygen. A better understanding of anaerobic gene expression in S. aureus will provide important insights into the regulation of genes in low-oxygen environments.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Reporter , Staphylococcus aureus , Anaerobiose , Staphylococcus aureus/genética , Transcrição Gênica
5.
J Bacteriol ; 202(4)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31792012

RESUMO

Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.


Assuntos
Proteínas de Bactérias/fisiologia , Enzimas Multifuncionais/fisiologia , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação , Transcrição Gênica
6.
Artigo em Inglês | MEDLINE | ID: mdl-29632012

RESUMO

Tetracyclines have been one of the most successful classes of antibiotics. However, its extensive use has led to the emergence of widespread drug resistance, resulting in discontinuation of use against several bacterial infections. Prominent resistance mechanisms include drug efflux and the use of ribosome protection proteins. Infrequently, tetracyclines can be inactivated by the TetX class of enzymes, also referred to as tetracycline destructases. Low levels of tolerance to tetracycline in Mycobacterium smegmatis and Mycobacterium tuberculosis have been previously attributed to the WhiB7-dependent TetV/Tap efflux pump. However, Mycobacterium abscessus is ∼500-fold more resistant to tetracycline than M. smegmatis and M. tuberculosis In this report, we show that this high level of resistance to tetracycline and doxycycline in M. abscessus is conferred by a WhiB7-independent tetracycline-inactivating monooxygenase, MabTetX (MAB_1496c). The presence of sublethal doses of tetracycline and doxycycline results in a >200-fold induction of MabTetX, and an isogenic deletion strain is highly sensitive to both antibiotics. Further, purified MabTetX can rapidly monooxygenate both antibiotics. We also demonstrate that expression of MabTetX is repressed by MabTetRx, by binding to an inverted repeat sequence upstream of MabTetRx; the presence of either antibiotic relieves this repression. Moreover, anhydrotetracycline (ATc) can effectively inhibit MabTetX activity in vitro and decreases the MICs of both tetracycline and doxycycline in vivo Finally, we show that tigecycline, a glycylcycline tetracycline, not only is a poor substrate of MabTetX but also is incapable of inducing the expression of MabTetX. This is therefore the first demonstration of a tetracycline-inactivating enzyme in mycobacteria. It (i) elucidates the mechanism of tetracycline resistance in M. abscessus, (ii) demonstrates the use of an inhibitor that can potentially reclaim the use of tetracycline and doxycycline, and (iii) identifies two sequential bottlenecks-MabTetX and MabTetRx-for acquiring resistance to tigecycline, thereby reiterating its use against M. abscessus.


Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Oxigenases de Função Mista/metabolismo , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/enzimologia , Resistência a Tetraciclina/genética , Tetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Testes de Sensibilidade Microbiana , Oxigenases de Função Mista/genética , Mycobacterium abscessus/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tetraciclinas/farmacologia , Tigeciclina/farmacologia
7.
J Biol Chem ; 291(3): 1064-75, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546673

RESUMO

Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, ß, ß', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Iniciação da Transcrição Genética , Sequência Rica em At , Proteínas de Bactérias/genética , Pegada de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Corantes Fluorescentes , Mutagênese Sítio-Dirigida , Mutação Puntual , Regiões Promotoras Genéticas , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/metabolismo , Rodaminas/química , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
8.
Artigo em Inglês | MEDLINE | ID: mdl-28874378

RESUMO

Mycobacterium abscessus causes acute and chronic bronchopulmonary infection in patients with chronic lung damage, of which cystic fibrosis (CF) patients are particularly vulnerable. The major threat posed by this organism is its high intrinsic antibiotic resistance. A typical treatment regimen involves a 6- to 12-month-long combination therapy of clarithromycin and amikacin, with cure rates below 50% and multiple side effects, especially due to amikacin. In the present work, we show that M. abscessuswhiB7, a homologue of Mycobacterium tuberculosis and Mycobacterium smegmatis whiB7 with previously demonstrated effects on intrinsic antibiotic resistance, is strongly induced when exposed to clinically relevant antibiotics that target the ribosome: erythromycin, clarithromycin, amikacin, tetracycline, and spectinomycin. The deletion of M. abscessuswhiB7 results in sensitivity to all of the above-mentioned antibiotics. Further, we have defined and compared the whiB7 regulon of M. abscessus with the closely related nontuberculous mycobacterium (NTM) M. smegmatis to demonstrate the induction of a species-specific repertoire of genes. Finally, we show that one such gene, eis2, is specifically induced in M. abscessus by whiB7 and contributes to its higher levels of intrinsic amikacin resistance. This species-specific pattern of gene induction might account for the differences in drug susceptibilities to other antibiotics and between different mycobacterial species.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mycobacterium abscessus/efeitos dos fármacos , Amicacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium abscessus/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Ribossomos/genética
9.
Nucleic Acids Res ; 43(12): 5855-67, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25999340

RESUMO

We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Bactérias/química , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Ligação Proteica , RNA/biossíntese , Fator sigma/antagonistas & inibidores , Fatores de Transcrição/química
10.
J Bacteriol ; 197(3): 646-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448818

RESUMO

Development of an in vivo gene reporter assay to assess interactions among the components of the transcription machinery in Mycobacterium tuberculosis remains a challenge to scientists due to the tediousness of generation of mutant strains of the extremely slow-growing bacterium. We have developed a recombinant mCherry reporter assay that enables us to monitor the interactions of Mycobacterium tuberculosis transcriptional regulators with its promoters in vivo in Escherichia coli. The assay involves a three-plasmid expression system in E. coli wherein two plasmids are responsible for M. tuberculosis RNA polymerase (RNAP) production and the third plasmid harbors the mCherry reporter gene expression cassette under the control of either a σ factor or a transcriptional regulator-dependent promoter. We observed that the endogenous E. coli RNAP and σ factor do not interfere with the assay. By using the reporter assay, we found that the functional interaction of M. tuberculosis cyclic AMP receptor protein (CRP) occurs with its own RNA polymerase, not with the E. coli polymerase. Performing the recombinant reporter assay in E. coli is much faster than if performed in M. tuberculosis and avoids the hazard of handling the pathogenic bacterium. The approach could be expanded to develop reporter assays for other pathogenic and slow-growing bacterial systems.


Assuntos
Genes Reporter , Genética Microbiana/métodos , Biologia Molecular/métodos , Mycobacterium tuberculosis/genética , Recombinação Genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Expressão Gênica , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Plasmídeos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Proteína Vermelha Fluorescente
11.
Curr Opin Microbiol ; 55: 81-87, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388086

RESUMO

As investigators decipher the underlining mechanisms of Staphylococcus aureus pathogenesis, it is becoming apparent that perturbations in central metabolism alter virulence factor production and infection outcomes. It is also evident that S. aureus has the ability to metabolically adapt to improve colonization and overcome challenges imparted by the immune system. Altered metabolite pools modify virulence factor production suggesting that proper functioning of a core metabolic network is necessary for successful niche colonization and pathogenesis. Herein we discuss four examples of transcriptional regulators that monitor metabolic status. These regulatory systems sense perturbations in the metabolic network and respond by altering the transcription of genes utilized for central metabolism, energy generation and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Fatores de Transcrição/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética
12.
mBio ; 10(3)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113892

RESUMO

Mycobacterial σB belongs to the group II family of sigma factors, which are widely considered to transcribe genes required for stationary-phase survival and the response to stress. Here we explored the mechanism underlying the observed hypersensitivity of ΔsigB deletion mutants of Mycobacteriumsmegmatis, M. abscessus, and M. tuberculosis to rifampin (RIF) and uncovered an additional constitutive role of σB during exponential growth of mycobacteria that complements the function of the primary sigma factor, σA Using chromatin immunoprecipitation sequencing (ChIP-Seq), we show that during exponential phase, σB binds to over 200 promoter regions, including those driving expression of essential housekeeping genes, like the rRNA gene. ChIP-Seq of ectopically expressed σA-FLAG demonstrated that at least 61 promoter sites are recognized by both σA and σB These results together suggest that RNA polymerase holoenzymes containing either σA or σB transcribe housekeeping genes in exponentially growing mycobacteria. The RIF sensitivity of the ΔsigB mutant possibly reflects a decrease in the effective housekeeping holoenzyme pool, which results in susceptibility of the mutant to lower doses of RIF. Consistent with this model, overexpression of σA restores the RIF tolerance of the ΔsigB mutant to that of the wild type, concomitantly ruling out a specialized role of σB in RIF tolerance. Although the properties of mycobacterial σB parallel those of Escherichiacoli σ38 in its ability to transcribe a subset of housekeeping genes, σB presents a clear departure from the E. coli paradigm, wherein the cellular levels of σ38 are tightly controlled during exponential growth, such that the transcription of housekeeping genes is initiated exclusively by a holoenzyme containing σ70 (E.σ70).IMPORTANCE All mycobacteria encode a group II sigma factor, σB, closely related to the group I principal housekeeping sigma factor, σA Group II sigma factors are widely believed to play specialized roles in the general stress response and stationary-phase transition in the bacteria that encode them. Contrary to this widely accepted view, we show an additional housekeeping function of σB that complements the function of σA in logarithmically growing cells. These findings implicate a novel and dynamic partnership between σA and σB in maintaining the expression of housekeeping genes in mycobacteria and can perhaps be extended to other bacterial species that possess multiple group II sigma factors.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fator sigma/metabolismo , Transcrição Gênica , Deleção de Genes , Mycobacterium abscessus/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/deficiência
13.
Tuberculosis (Edinb) ; 94(4): 397-404, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24832563

RESUMO

Mycobacterium tuberculosis, the human pathogen that causes tuberculosis, warrants enormous attention due to the emergence of multi drug resistant and extremely drug resistant strains. RNA polymerase (RNAP), the key enzyme in gene regulation, is an attractive target for anti-TB drugs. Understanding the structure-function relationship of M. tuberculosis RNAP and the mechanism of gene regulation by RNAP in conjunction with different σ factors and transcriptional regulators would provide significant information for anti-tuberculosis drug development targeting RNAP. Studies with M. tuberculosis RNAP remain tedious because of the extremely slow-growing nature of the bacteria and requirement of special laboratory facility. Here, we have developed and optimized recombinant methods to prepare M. tuberculosis RNAP core and RNAP holo enzymes assembled in vivo in Escherichia coli. These methods yield high amounts of transcriptionally active enzymes, free of E. coli RNAP contamination. The recombinant M. tuberculosis RNAP is used to develop a highly sensitive fluorescence based in vitro transcription assay that could be easily adopted in a high-throughput format to screen RNAP inhibitors. These recombinant methods would be useful to set a platform for M. tuberculosis RNAP targeted anti TB drug development, to analyse the structure/function of M. tuberculosis RNAP and to analyse the interactions among promoter DNA, RNAP, σ factors, and transcription regulators of M. tuberculosis in vitro, avoiding the hazard of handling of pathogenic bacteria.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/enzimologia , Antituberculosos/farmacologia , Clonagem Molecular/métodos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Desenho de Fármacos , Escherichia coli/enzimologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fator sigma/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA