Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Stat Med ; 43(6): 1153-1169, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221776

RESUMO

Wastewater-based surveillance has become an important tool for research groups and public health agencies investigating and monitoring the COVID-19 pandemic and other public health emergencies including other pathogens and drug abuse. While there is an emerging body of evidence exploring the possibility of predicting COVID-19 infections from wastewater signals, there remain significant challenges for statistical modeling. Longitudinal observations of viral copies in municipal wastewater can be influenced by noisy datasets and missing values with irregular and sparse samplings. We propose an integrative Bayesian framework to predict daily positive cases from weekly wastewater observations with missing values via functional data analysis techniques. In a unified procedure, the proposed analysis models severe acute respiratory syndrome coronavirus-2 RNA wastewater signals as a realization of a smooth process with error and combines the smooth process with COVID-19 cases to evaluate the prediction of positive cases. We demonstrate that the proposed framework can achieve these objectives with high predictive accuracies through simulated and observed real data.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , COVID-19/epidemiologia , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Águas Residuárias
2.
J Med Virol ; 95(2): e28442, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579780

RESUMO

Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Águas Residuárias , Centros de Atenção Terciária , Surtos de Doenças
3.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341675

RESUMO

Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters.IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be inappropriate to adequately assess risk and ensure public safety when treated and partially treated wastewaters are encountered. This study argues for the use of human pinworm as a conservative indicator of the presence of helminth ova due to its small size, buoyancy, prevalence in humans, and environmental resistance.


Assuntos
Enterobius/isolamento & purificação , Águas Residuárias/parasitologia , Animais , Enterobius/efeitos dos fármacos , Enterobius/genética , Enterobius/crescimento & desenvolvimento , Óvulo/efeitos dos fármacos , Óvulo/crescimento & desenvolvimento , Esgotos/parasitologia , Purificação da Água
4.
Appl Environ Microbiol ; 82(15): 4743-4756, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235434

RESUMO

UNLABELLED: Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)-quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053-1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari Campylobacters in raw sewage were present at ∼10(2)/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE: The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment.


Assuntos
Campylobacter/crescimento & desenvolvimento , Campylobacter/isolamento & purificação , Água Doce/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Águas Residuárias/microbiologia , Irrigação Agrícola , Campylobacter/classificação , Campylobacter/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Especificidade da Espécie
5.
Appl Environ Microbiol ; 82(18): 5505-18, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371583

RESUMO

UNLABELLED: Escherichia coli has been proposed to have two habitats-the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE: The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic elements likely important for survival in this nonhost environment. The presence of non-host-adapted strains in wastewater challenges our understanding of using E. coli as a microbial indicator of wastewater treatment performance, suggesting that the E. coli strains present in human and animal feces may be very different from those found in treated wastewater.


Assuntos
Adaptação Biológica , Escherichia coli/classificação , Escherichia coli/fisiologia , Genótipo , Estresse Fisiológico , Águas Residuárias/microbiologia , Técnicas de Tipagem Bacteriana , Cloro/metabolismo , Análise por Conglomerados , Elementos de DNA Transponíveis , Desinfetantes/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Polimorfismo de Nucleotídeo Único , Purificação da Água
6.
Appl Environ Microbiol ; 81(17): 5845-54, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092455

RESUMO

The occurrence of Cryptosporidium oocysts in drinking source water can present a serious public health risk. To rapidly and effectively assess the source and human-infective potential of Cryptosporidium oocysts in water, sensitive detection and correct identification of oocysts to the species level (genotyping) are essential. In this study, we developed three real-time PCR genotyping assays, two targeting the small-subunit (SSU) rRNA gene (18S-LC1 and 18S-LC2 assays) and one targeting the 90-kDa heat shock protein (hsp90) gene (hsp90 assay), and evaluated the sensitivity and Cryptosporidium species detection range of these assays. Using fluorescence resonance energy transfer probes and melt curve analysis, the 18S-LC1 and hsp90 assays could differentiate common human-pathogenic species (C. parvum, C. hominis, and C. meleagridis), while the 18S-LC2 assay was able to differentiate nonpathogenic species (such as C. andersoni) from human-pathogenic ones commonly found in source water. In sensitivity evaluations, the 18S-LC2 and hsp90 genotyping assays could detect as few as 1 Cryptosporidium oocyst per sample. Thus, the 18S-LC2 and hsp90 genotyping assays might be used in environmental monitoring, whereas the 18S-LC1 genotyping assay could be useful for genotyping Cryptosporidium spp. in clinical specimens or wastewater samples.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Água Doce/parasitologia , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Cryptosporidium/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Genótipo , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas de Protozoários/genética , RNA Ribossômico 18S/genética
7.
Sci Total Environ ; 923: 171257, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417510

RESUMO

To evaluate effects of tertiary treated wastewater treatment plant effluent (MWWE) on transcriptomic responses in longnose dace (Rhinichthys cataractae; LND) we conducted a semi-controlled study in experimental raceways (Advancing Canadian Water Assets facility) imbedded in the Pine Creek treatment plant (Calgary, AB). LND collected from a reference site in the Bow River (REF) were caged in raceways containing either 5 % Pine Creek effluent (PC) or Bow River water (BR; control) over 28 d. Liver transcriptomes were analyzed in males and females sampled on days 7, 14 and 28 from BR and PC, and compared to REF fish on day 0. Concurrent with the caging, selected environmental substances of concern were analyzed in the BR and PC. Significantly different unigenes (SDUs) in females (vs males) within both BR and PC raceways increased over time and compared to REF fish. Moreover, SDUs in females and males within the same treatment (i.e., BR, PC) showed a temporal increase as well as compared to REF fish. Time was the dominant factor affecting SDUs, whereas sex and treatment had less of an impact on the transcriptome profiling. Gene Set Enrichment Analysis of BR vs PC over time revealed effects on genes involved in growth, metabolism of carbohydrates and lipids, and immune system on day 7; however, by day 28, 80-100 % of the transcripts localized to enriched biomarkers were associated with tissue immune responses in both sexes. Exposure to 5 % effluent had significant effects on female liver somatic index but no effects were observed on other phenotypic health indices in either sex. BR was used as the source of reference water, but analyses showed trace amounts of ESOCs. Analyses did not point towards definitive response patterns that could be used in field-based ecotoxicogenomic studies on the impacts of well-treated MWWE but suggested compromised adaptive immune responses.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Feminino , Masculino , Animais , Canadá , Transcriptoma , Cyprinidae/fisiologia , Perfilação da Expressão Gênica , Água , Poluentes Químicos da Água/análise
8.
Appl Environ Microbiol ; 79(2): 434-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124241

RESUMO

Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.


Assuntos
Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Variação Genética , Filogeografia , Água/parasitologia , Animais , Animais Selvagens/parasitologia , Bactérias/isolamento & purificação , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Cryptosporidium/genética , Genótipo , Giardia/isolamento & purificação , Humanos , Ontário , Carga Parasitária , Medição de Risco , Análise Espaço-Temporal , Fatores de Tempo
9.
Appl Environ Microbiol ; 79(20): 6207-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913430

RESUMO

Over 1,400 water samples were collected biweekly over 6 years from an intermittent stream protected and unprotected from pasturing cattle. The samples were monitored for host-specific Bacteroidales markers, Cryptosporidium species/genotypes, viruses and coliphages associated with humans or animals, and bacterial zoonotic pathogens. Ruminant Bacteroidales markers did not increase within the restricted cattle access reach of the stream, whereas the ruminant Bacteroidales marker increased significantly in the unrestricted cattle access reach. Human Bacteroidales markers significantly increased downstream of homes where septic issues were documented. Wildlife Bacteroidales markers were detected downstream of the cattle exclusion practice where stream and riparian habitat was protected, but detections decreased after the unrestricted pasture, where the stream and riparian zone was unprotected from livestock. Detection of a large number of human viruses was shown to increase downstream of homes, and similar trends were observed for the human Bacteroidales marker. There was considerable interplay among biomarkers with stream flow, season, and the cattle exclusion practices. There were no to very weak associations with Bacteroidales markers and bacterial, viral, and parasitic pathogens. Overall, discrete sample-by-sample coherence among the different microbial source tracking markers that expressed a similar microbial source was minimal, but spatial trends were physically meaningful in terms of land use (e.g., beneficial management practice) effects on sources of fecal pollution.


Assuntos
Bacteroidetes/isolamento & purificação , Cryptosporidium/isolamento & purificação , Rios/microbiologia , Rios/virologia , Vírus/isolamento & purificação , Poluição da Água , Animais , Bacteroidetes/classificação , Bovinos , Humanos , Rios/parasitologia , Vírus/classificação
10.
Sci Total Environ ; 856(Pt 1): 158964, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167131

RESUMO

Wastewater-based surveillance (WBS) data normalization is an analyte measurement correction that addresses variations resulting from dilution of fecal discharge by non-sanitary sewage, stormwater or groundwater infiltration. No consensus exists on what WBS normalization parameters result in the strongest correlations and lead time between SARS-CoV-2 WBS data and COVID-19 cases. This study compared flow, population size and biomarker normalization impacts on the correlations and lead times for ten communities in twelve sewersheds in Alberta (Canada) between September 2020 and October 2021 (n = 1024) to determine if normalization by Pepper Mild Mottle Virus (PMMoV) provides any advantages compared to other normalization parameters (e.g., flow, reported and dynamic population sizes, BOD, TSS, NH3, TP). PMMoV concentrations (GC/mL) corresponded with plant influent flows and were highest in the urban centres. SARS-CoV-2 target genes E, N1 and N2 were all negatively associated with wastewater influent pH, while PMMoV was positively associated with temperature. Pooled data analysis showed that normalization increased ρ-values by almost 0.1 and was highest for ammonia, TKN and TP followed by PMMoV. Normalization by other parameters weakened associations. None of the differences were statistically significant. Site-specific correlations showed that normalization of SARS-CoV-2 data by PMMoV only improved correlations significantly in two of the twelve systems; neither were large sewersheds or combined sewer systems. In five systems, normalization by traditional wastewater strength parameters and dynamic population estimates improved correlations. Lead time ranged between 1 and 4 days in both pooled and site-specific comparisons. We recommend that WBS researchers and health departments: a) Investigate WWTP influent properties (e.g., pH) in the WBS planning phase and use at least two parallel approaches for normalization only if shown to provide value; b) Explore normalization by wastewater strength parameters and dynamic population size estimates further; and c) Evaluate purchasing an influent flow meter in small communities to support long-term WBS efforts and WWTP management.


Assuntos
COVID-19 , Águas Residuárias , Humanos , SARS-CoV-2 , Alberta , Chumbo , Vigilância Epidemiológica Baseada em Águas Residuárias
11.
Water Res ; 244: 120454, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586251

RESUMO

Using a novel liquid chromatography-tandem mass spectrometry method with large volume direct injection and quantitation via isotope dilution, we evaluated the presence of 55 organic micropollutants in wastewater effluents, and locations within the Bow River and Elbow River watersheds in and around the city of Calgary, Alberta, Canada. In addition to establishing baseline micropollutant data for water utility operations, our study aimed to enhance our understanding of micropollutant behavior in the urban water cycle, assess the contributions of three wastewater treatment plants (WWTPs) to downstream receiving waters, explain the potential causes of total estrogenicity measured using the yeast-estrogen screen assay (YES), and prioritize a subset of substances for continuous monitoring. With data spanning 48 months and 95 river km, our results indicate the extensive persistence of metformin (antidiabetic), seasonality of N,N­diethyl-m-toluamide (DEET, insect repellant), O-desmethylvenlafaxine (antidepressant metabolite), and sulfamethoxazole (antibiotic) in source waters, and sporadic detections of a well-known perfluoroalkyl substance (PFOA). The seasonality of pharmaceuticals at the sentinel downstream monitoring site appeared to coincide with river dilution while that of DEET was likely attributable to peak usage during the warmer months. Steroidal estrogens were rarely detected in wastewater effluents although total estrogenicity via YES was evident, suggesting the presence of less potent but more abundant non-steroidal estrogens (e.g., flame retardants, bisphenols, and phthalates). A conservative mass balance analysis suggests that the largest WWTP (serving a population of >1 million) consistently contributed the highest load of micropollutants, with the exception of metformin, which appeared to be influenced by a smaller WWTP (serving 115,000) that operates a different activated sludge process. We consider metformin, sucralose, diclofenac, and venlafaxine as more effective conservative tracers of wastewater pollution due to their notably higher concentrations and persistence in the Bow River compared to carbamazepine and caffeine, respectively. Finally, hierarchical clustering revealed a close association between E. coli and caffeine, supporting the use of caffeine as an indicator of short-term, untreated anthropogenic inputs. Overall, this study yields valuable insights on the presence, behavior, and sources of organic micropollutants in the urban water cycle and identifies indicators of anthropogenic impacts that are useful for prioritizing future monitoring campaigns in Calgary and elsewhere.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , DEET , Cafeína , Escherichia coli , Ciclo Hidrológico , Saccharomyces cerevisiae , Estrogênios/análise , Alberta
12.
Sci Total Environ ; 900: 165172, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379934

RESUMO

Wastewater-based surveillance (WBS) of infectious diseases is a powerful tool for understanding community COVID-19 disease burden and informing public health policy. The potential of WBS for understanding COVID-19's impact in non-healthcare settings has not been explored to the same degree. Here we examined how SARS-CoV-2 measured from municipal wastewater treatment plants (WWTPs) correlates with workforce absenteeism. SARS-CoV-2 RNA N1 and N2 were quantified three times per week by RT-qPCR in samples collected at three WWTPs servicing Calgary and surrounding areas, Canada (1.4 million residents) between June 2020 and March 2022. Wastewater trends were compared to workforce absenteeism using data from the largest employer in the city (>15,000 staff). Absences were classified as being COVID-19-related, COVID-19-confirmed, and unrelated to COVID-19. Poisson regression was performed to generate a prediction model for COVID-19 absenteeism based on wastewater data. SARS-CoV-2 RNA was detected in 95.5 % (85/89) of weeks assessed. During this period 6592 COVID-19-related absences (1896 confirmed) and 4524 unrelated absences COVID-19 cases were recorded. A generalized linear regression using a Poisson distribution was performed to predict COVID-19-confirmed absences out of the total number of absent employees using wastewater data as a leading indicator (P < 0.0001). The Poisson regression with wastewater as a one-week leading signal has an Akaike information criterion (AIC) of 858, compared to a null model (excluding wastewater predictor) with an AIC of 1895. The likelihood-ratio test comparing the model with wastewater signal with the null model shows statistical significance (P < 0.0001). We also assessed the variation of predictions when the regression model was applied to new data, with the predicted values and corresponding confidence intervals closely tracking actual absenteeism data. Wastewater-based surveillance has the potential to be used by employers to anticipate workforce requirements and optimize human resource allocation in response to trackable respiratory illnesses like COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Absenteísmo , Vigilância Epidemiológica Baseada em Águas Residuárias , SARS-CoV-2 , RNA Viral , Águas Residuárias
13.
Water Res ; 220: 118611, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661506

RESUMO

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.


Assuntos
COVID-19 , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , População Urbana , Águas Residuárias
14.
Appl Environ Microbiol ; 77(12): 3998-4007, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498746

RESUMO

Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common.


Assuntos
Cryptosporidium/classificação , Cryptosporidium/genética , Parasitologia/métodos , Clonagem Molecular , Cryptosporidium/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
15.
Water Res ; 201: 117369, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229222

RESUMO

SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totaling > 2100 dedicated inpatient beds) were collected. Hospital-1 and Hospital-2 could be captured with a single sampling point whereas Hospital-3 required three separate monitoring sites. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of the amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations at those sites with single monitoring points (Pearson's r = 0.679, P < 0.0001, Pearson's r = 0.799, P < 0.0001, respectively). Despite increasing hospitalizations through the study period, nosocomial-acquired cases of COVID-19 (Pearson's r = 0.389, P < 0.001) and unit-specific outbreaks were discernable with significant increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P < 0.0001). Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças , Humanos , Centros de Atenção Terciária , Carga Viral , Águas Residuárias
16.
Water Res ; 182: 115827, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580076

RESUMO

A growing body of evidence has demonstrated that extraintestinal pathogenic E. coli (ExPEC), such as the urinary pathogenic E. coli (UPEC), are common constituents of treated wastewater, and therefore represent a potential public health risk. However, no single virulence gene, or set of virulence genes, can be used to conclusively identify this genetically diverse pathotype. As such we sought to identify and characterize the public health relevance of potential UPEC found in treated sewage/wastewater using a comparative genomics approach. Presumptive wastewater UPEC (W-UPEC) were initially identified by virulence gene screening against 5 virulence genes, and for which isolates containing ≥3 virulence genes were whole genome sequenced (n = 24). Single nucleotide polymorphic (SNP) spanning tree analysis demonstrated that many of these wastewater UPEC (WUPEC) were virtually identical at the core genome (0.4 Mbp) when compared to clinical UPEC (C-UPEC) sequences obtained from NCBI, varying by as little as 1 SNP. Remarkably, at the whole genome level, W-UPEC isolates displayed >96% whole genome similarity to C-UPEC counterparts in NCBI, with one strain demonstrating 99.5% genome similarity to a particular C-UPEC strain. The W-UPEC populations were represented by sequence types (ST) known to be clinically important, including ST131, ST95, ST127 and ST640. Many of the W-UPEC carried the exact same complement of virulence genes as their most closely related C-UPEC strains. For example, O25b-ST131 W-UPEC strains possessed the same 80 virulence genes as their most closely related C-UPEC counterparts. Concerningly, W-UPEC strains also carried a plethora of antibiotic resistance genes, and O25b-ST131strains were designated as extended spectrum beta-lactamase (ESBL) producing E. coli by both genome profiling and phenotypic resistance testing. W-UPEC ST131 strains were found in the effluents of a single treatment plant at different times, as well as different wastewater treatment plants, suggesting a differentially ability to survive wastewater treatment. Indeed, in sewage samples treated with chlorine doses sufficient for inducing a ∼99.99% reduction in total E. coli levels, UPEC represented a significant proportion of the chlorine-resistant population. By contrast, no Shiga toxin-producing E. coli were observed in these chlorinated sewage libraries. Our results suggest that clinically-relevant UPEC exist in treated wastewater effluents and that they appear to be specifically adapted to survive wastewater treatment processes.


Assuntos
Infecções por Escherichia coli , Purificação da Água , Escherichia coli , Genótipo , Humanos , Fatores de Virulência , Águas Residuárias , beta-Lactamases/genética
17.
Water Res ; 43(8): 2209-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19339033

RESUMO

The South Nation River basin in eastern Ontario, Canada is characterized by mixed agriculture. Over 1600 water samples were collected on a bi-weekly basis from up to 24 discrete sampling sites on river tributaries of varying stream order within the river basin between 2004 and 2006. Water samples were analyzed for: densities of indicator bacteria (Escherichia coli, Clostridium perfringens, enterococci, total and fecal coliforms), the presence of pathogenic bacteria (Listeria monocytogenes, E. coli O157:H7, Salmonella spp., Campylobacter spp.), and densities of parasite Giardia cysts and Cryptosporidium oocysts. Relationships between indicator bacteria, pathogens, and parasite oocysts/cysts were overall weak, seasonally dependent, site specific, but primarily positive. However, L. monocytogenes was inversely related with indicator bacteria densities. Campylobacter, Salmonella, Giardia cysts and Cryptosporidium oocysts were most frequently detected in the fall. E. coli O157:H7 was detected at a very low frequency. Exploratory decision tree analyses found overall that E. coli densities were the most utilitarian classifiers of parasite/pathogen presence and absence, followed closely by fecal coliforms, and to a lesser extent enterococci and total coliforms. Indicator bacteria densities that classified pathogen presence and absence groupings, were all below 100 CFU per 100 mL(-1). Microorganism relationships with rainfall indices and tributary discharge variables were globally weak to modest, and generally inconsistent among season, site and microorganism. But, overall rainfall and discharge were primarily positively associated with indicator bacteria densities and pathogen detection. Instances where a pathogen was detected in the absence of a detectable bacterial indicator were extremely infrequent; thus, the fecal indicators were conservative surrogates for a variety of pathogenic microorganisms in this agricultural setting. The results from this study indicate that no one indicator or simple hydrological index is entirely suitable for all environmental systems and pathogens/parasites, even within a common geographic setting. These results place more firmly into context that robust prediction and/or indicator utility will require a more firm understanding of microorganism distribution in the landscape, the nature of host sources, and transport/environmental fate affinities among pathogens and indicators.


Assuntos
Agricultura , Bactérias/crescimento & desenvolvimento , Cryptosporidium/crescimento & desenvolvimento , Giardia/crescimento & desenvolvimento , Oocistos/crescimento & desenvolvimento , Estações do Ano , Microbiologia da Água , Animais , Canadá , Parasitos/crescimento & desenvolvimento , Rios/microbiologia , Estatísticas não Paramétricas , Propriedades de Superfície
18.
Water Res ; 147: 73-81, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30300783

RESUMO

Ultraviolet (UV) disinfection is widely used to inactivate microorganisms prior to release of treated municipal wastewater. However, limited data are available for in situ inactivation of infectious enteric viruses by UV treatment at full-scale. In this study, a total of 51 pre-UV and 50 post-UV samples were collected over a two-year period from two wastewater treatment plants (WWTPs) and analyzed for noroviruses, rotavirus, reovirus, sapovirus, astrovirus, enteroviruses, adenoviruses and JC virus. Both pre-UV and post-UV samples had relatively high concentrations of these viruses determined by qPCR. Infectious viruses were also observed in 98% of pre-UV samples and 76% of post-UV samples by cell culture, using either cytopathic effect (CPE) or integrated cell culture with qPCR (ICC-qPCR). Reovirus was the most common virus detected by ICC-qPCR, present in 92% of pre-UV and 48% of post-UV samples. Infectious enterovirus and adenovirus were detected by ICC-qPCR in 33% and 31% of pre-UV samples, 14% and 20% of post-UV samples, respectively. Mean log10 reduction estimates for infectious reovirus was 1.2 and 1.8 log for the two WWTPs as assessed by ICC-qPCR, which was similar to the reduction of total infectious viruses (1.5 and 1.7 log) as assessed by CPE in cells culture. Overall, quantification of infectious reovirus appears to provide a useful index of enteric virus inactivation during wastewater treatment at full-scale. To our knowledge, this is the first comprehensive study to assess UV inactivation of human enteric viruses at full-scale in WWTPs using both molecular and cell culture techniques, providing important information for quantitative microbial risk assessment of UV inactivation of human viruses in municipal wastewater.


Assuntos
Enterovirus , Vírus , Canadá , Humanos , Raios Ultravioleta , Águas Residuárias
19.
J Virol Methods ; 237: 150-153, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27630040

RESUMO

A one-step centrifugal ultrafiltration method was developed to enhance rapid detection of human enteric viruses and co-occurring viruses in wastewater. Samples were collected pre- and post-UV treatment at two full-scale tertiary municipal wastewater treatment plants in Calgary, Canada. Viruses were concentrated from 100mL wastewater samples through direct centrifugation using the Centricon Plus-70 ultrafilter. Seven viruses, including norovirus, rotavirus, sapovirus, astrovirus, enterovirus, adenovirus and JC virus, were tested using real-time quantitative PCR (rt-qPCR) and cell culture. All of the viruses were detected in pre- and post-UV samples by rt-qPCR, with rotavirus the most numerous (6.6 log10 GE copies/L). Infectious viruses, by cell culture, were found in all tested pre-UV samples but only in one post-UV sample. The results were comparable and consistent to that obtained using virus adsorption-elution method, indicating that the centrifugal ultrafiltration method is adequate to retain the viruses and maintain their infectivity during processing. As a simple, rapid and cost-effective method to screen wastewater viruses, this one-step centrifugal ultrafiltration method may serve as an effective approach to assess virus removal and gain knowledge of human virus activity during wastewater treatment.


Assuntos
Ultrafiltração/métodos , Vírus/isolamento & purificação , Águas Residuárias/virologia , Microbiologia da Água , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Infecções por Adenoviridae/prevenção & controle , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Canadá , Técnicas de Cultura de Células , Enterovirus/genética , Enterovirus/isolamento & purificação , Infecções por Enterovirus/prevenção & controle , Humanos , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/genética , Rotavirus/isolamento & purificação , Ultrafiltração/instrumentação , Viroses/prevenção & controle , Viroses/virologia , Vírus/genética
20.
Infect Genet Evol ; 15: 3-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23088833

RESUMO

Environmental concentrations of Cryptosporidium require molecular assays with ultra-sensitive detection limits and which provide critical information on genetic diversity within the genus, a feat particularly challenging from a diagnostics point of view. In this study, the performance of repetitive nested PCR-RFLP and limiting template dilution repetitive nested PCR-RFLP were assessed for their ability to detect Cryptosporidium and resolve mixtures of species and genotypes on microscope slides prepared by USEPA Method 1623 from raw water samples. Seventy percent of water samples positive for Cryptosporidium oocysts by immunofluorescent microscopy tested positive by molecular assays and resulted in species/genotype identification. Multiple species/genotypes were detected in 41% of the samples, including 30 samples from which 3 species/genotypes were detected and 11 samples where 4 species/genotypes were detected. In all, 29 species or genotypes were detected which were represented by the 102 different sequences identified. Of these, 64 were considered novel as no matches were available in GenBank. These results support the use of repetitive and limiting template approaches for the detection and resolution of Cryptosporidium from the environment as well as further supporting the use of DNA sequencing as the most appropriate tool for identifying Cryptosporidium species and genotypes from water.


Assuntos
Cryptosporidium/classificação , Cryptosporidium/genética , Genótipo , Água/parasitologia , Sequência de Bases , Cryptosporidium/isolamento & purificação , DNA de Protozoário , Monitoramento Ambiental , Variação Genética , Dados de Sequência Molecular , Oocistos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA