Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 83(3): 1114-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561707

RESUMO

The viscoelastic mucus layer of gastrointestinal tracts is a host defense barrier that a successful enteric pathogen, such as Vibrio cholerae, must circumvent. V. cholerae, the causative agent of cholera, is able to penetrate the mucosa and colonize the epithelial surface of the small intestine. In this study, we found that mucin, the major component of mucus, promoted V. cholerae movement on semisolid medium and in liquid medium. A genome-wide screen revealed that Vibrio polysaccharide (VPS) production was inversely correlated with mucin-enhanced motility. Mucin adhesion assays indicated that VPS bound to mucin. Moreover, we found that vps expression was reduced upon exposure to mucin. In an infant mouse colonization model, mutants that overexpressed VPS colonized less effectively than wild-type strains in more distal intestinal regions. These results suggest that V. cholerae is able to sense mucosal signals and modulate vps expression accordingly so as to promote fast motion in mucus, thus allowing for rapid spread throughout the intestines.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mucinas/metabolismo , Polissacarídeos Bacterianos/biossíntese , Vibrio cholerae/metabolismo , Animais , Animais Recém-Nascidos , Cólera/microbiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/química , Mucosa Intestinal/microbiologia , Intestino Delgado/química , Intestino Delgado/microbiologia , Camundongos , Movimento , Polissacarídeos Bacterianos/genética , Ligação Proteica , Transdução de Sinais , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
2.
Microbiology (Reading) ; 161(8): 1683-1693, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998262

RESUMO

Expression of the lysis cassette (essD, ybcT, rzpD/rzoD) from the defective lambdoid prophage at the 12th minute of Escherichia coli's genome (DLP12) is required in some strains for proper curli expression and biofilm formation. Regulating production of the lytic enzymes encoded by these genes is critical for maintaining cell wall integrity. In lambdoid phages, late-gene regulation is mediated by the vegetative sigma factor RpoD and the lambda antiterminator Qλ. We previously demonstrated that DLP12 contains a Q-like protein (QDLP12) that positively regulates transcription of the lysis cassette, but the sigma factor responsible for this transcription initiation remained to be elucidated. In silico analysis of essDp revealed the presence of a putative - 35 and - 10 sigma site recognized by the extracytoplasmic stress response sigma factor, RpoE. In this work, we report that RpoE overexpression promoted transcription from essDp in vivo, and in vitro using purified RNAP. We demonstrate that the - 35 region is important for RpoE binding in vitro and that this region is also important for QDLP12-mediated transcription of essDp in vivo. A bacterial two-hybrid assay indicated that QDLP12 and RpoE physically interact in vivo, consistent with what is seen for Qλ and RpoD. We propose that RpoE regulates transcription of the DLP12 lysis genes through interaction with QDLP12 and that proper expression is dependent on an intact - 35 sigma region in essDp. This work provides evidence that the unique Q-dependent regulatory mechanism of lambdoid phages has been co-opted by E. coli harbouring defective DLP12 and has been integrated into the tightly controlled RpoE regulon.


Assuntos
Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Prófagos/metabolismo , Fator sigma/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Prófagos/genética , Ligação Proteica , Fator sigma/genética , Transcrição Gênica , Proteínas Virais/genética
3.
Microbiology (Reading) ; 159(Pt 4): 691-700, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378572

RESUMO

The DLP12 lysis cassette (essD, ybcT, rzpD/rzoD) is required in certain Escherichia coli strains for normal curli expression and biofilm development. Tightly controlled regulation of the lysis cassette is of particular importance, since its overexpression causes host cell lysis. In silico analysis revealed a putative intrinsic transcriptional terminator 100 bp upstream of essD and within 2000 bp of ybcQ (Q(DLP12)), a putative lambda (λ) Q-like antiterminator. We hypothesized that Q(DLP12) may be required for effective expression of the lysis cassette. In this work we report on the role of Q(DLP12) as a positive regulator of DLP12 lysis cassette expression. Mutants lacking Q(DLP12) exhibited a biofilm-defective phenotype analogous to that of the lysis cassette knockouts. This defect occurred through the downregulation of curli transcription, which is also consistent with that seen in the lysis cassette mutants and was restored by complementation by ectopic expression of Q(DLP12). In addition, Q(DLP12) overexpression caused cell lysis, as demonstrated by leakage of ß-galactosidase activity from cells. This was accompanied by upregulation of the DLP12 lysis cassette as demonstrated by increased essD transcription, which was documented with gfp-reporter assays, RT-PCR and chromatin immunoprecipitation (ChIP). We provide evidence that this Q-mediated effect resulted from direct interaction of Q(DLP12) with the lysis cassette promoter (essDp), as demonstrated by electrophoretic gel mobility shift assay (EMSA). We propose that Q(DLP12) encodes a functional transcriptional regulator, which promotes expression of the DLP12 lysis cassette. This work provides evidence of a regulator from a defective prophage affecting host cell physiology.


Assuntos
Bacteriófago lambda/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Prófagos/fisiologia , Fatores de Transcrição/metabolismo , Bacteriófago lambda/genética , Meios de Cultura , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Viral da Expressão Gênica , Lisogenia , Mutação , Prófagos/genética , Fatores de Transcrição/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Microbiology (Reading) ; 157(Pt 6): 1640-1650, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415116

RESUMO

Phages have recently been implicated as important in biofilm development, although the mechanisms whereby phages impact biofilms remain unclear. One defective lambdoid phage carried by Escherichia coli K-12 is DLP12. Among the genes found in DLP12 are essD, ybcS and rzpD/rzoD, which are homologues of the Lambda phage genes encoding cell-lysis proteins (S, R and Rz/Rz(1)). The role that these DLP12 lysis genes play in biofilm formation was examined in deletion mutants of E. coli PHL628, a curli-overproducing, biofilm-forming K-12 derivative. Strains lacking essD, ybcS and rzpD/rzoD were unable to form wild-type biofilms. While all mutants were compromised in attachment to abiotic surfaces and aggregated less well than the wild-type, the effect of the essD knockout on biofilm formation was less dramatic than that of deleting ybcS or rzpD/rzoD. These results were consistent with electron micrographs of the mutants, which showed a decreased number of curli fibres on cell surfaces. Also consistent with this finding, we observed that expression from the promoter of csgB, which encodes the curli subunits, was downregulated in the mutants. As curli production is transcriptionally downregulated in response to cell wall stress, we challenged the mutants with SDS and found them to be more sensitive to the detergent than the wild-type. We also examined the release of (14)C-labelled peptidoglycan from the mutants and found that they did not lose labelled peptidoglycan to the same extent as the wild-type. Given that curli production is known to be suppressed by N-acetylglucosamine 6-phosphate (NAG-6P), a metabolite produced during peptidoglycan recycling, we deleted nagK, the N-acetylglucosamine kinase gene, from the lysis mutants and found that this restored curli production. This suggested that deletion of the lysis genes affected cell wall status, which was transduced to the curli operon by NAG-6P via an as yet unknown mechanism. These observations provide evidence that the S, R and Rz/Rz(1) gene homologues encoded by DLP12 are not merely genetic junk, but rather play an important, though undefined, role in cell wall maintenance.


Assuntos
Bacteriófago lambda/fisiologia , Biofilmes/crescimento & desenvolvimento , Vírus Defeituosos/fisiologia , Escherichia coli K12/crescimento & desenvolvimento , Lisogenia/genética , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Parede Celular/metabolismo , Vírus Defeituosos/genética , Vírus Defeituosos/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/virologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Prófagos/metabolismo , Prófagos/fisiologia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA