Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bone Joint J ; 105-B(3): 261-268, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854327

RESUMO

The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R2 = 0.77), with a similar trend for overimpaction (p = 0.082, R2 = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R2 = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies.


Assuntos
Acetábulo , Plásticos , Humanos , Acetábulo/cirurgia , Microtomografia por Raio-X
2.
J Orthop Res ; 40(9): 2139-2146, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34855229

RESUMO

Insufficient primary stability of acetabular hip cups is a complication resulting in early cup loosening. Available cup designs vary in terms of wall thickness, potentially affecting implant fixation. This study investigated the influence of different wall thicknesses on the implantation process and the resulting primary stability using excised human acetabula. Implantations were performed using a powered impaction device providing consistent energy with each stroke. Two different wall thicknesses were compared in terms of seating progress, polar gap remaining after implantation, bone-to-implant contact area, cup deflection, and lever out moment. Thin-walled cups showed higher lever out resistance (p < 0.001) and smaller polar gaps (p < 0.001) with larger bone contact toward the dome of the cup (p < 0.001) compared to thick-walled cups. Small seating steps at the end of the impaction process were observed if a high number of strokes were needed to seat the cup (p = 0.045). A high number of strokes led to a strain release of the cup during the final strokes (p = 0.003). This strain release is indicative for over-impaction of the cup associated with bone damage and reduced primary stability. Adequate cup seating can be achieved with thin-walled cups with lower energy input in comparison to thicker ones. Thin-walled cups showed improved primary stability and enable implantation with lower energy input, reducing the risk of over-impaction and bone damage. Additional strokes should be avoided as soon as no further seating progress has been observed.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Acetábulo/cirurgia , Humanos , Desenho de Prótese , Falha de Prótese
3.
J Biomech ; 139: 111149, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609491

RESUMO

Sufficient primary stability is one of the most important prerequisites for successful osseointegration of cementless implants. Bone grafts, densification and compaction methods have proven clinically successful, but the related effects and causes have not been systematically investigated. Postoperatively, the frictional properties of the bone-implant interface determine the amount of tolerable shear stress. Frictional properties of different implant surfaces have been widely studied. Less attention has been paid to the influence of host bone modifications. The purpose of this study was to investigate the influence of densification of cancellous bone with bone particles on the interface friction coefficient. Cancellous bone samples from femoral heads were densified with bone particles obtained during sample preparation. The densification was quantified using micro-Ct. Friction coefficients of the densified and paired native samples were determined. Densification increased the BV/TV in the first two millimeters of the bone samples by 10.5 ± 2.7% to 30.5 ± 2.7% (p < 0.001). The static friction coefficient was increased by 10.5 ± 6.1% to 0.43 ± 0.03. The static friction coefficient increased with higher BV/TV of the bone interface, which is represented by the top 2 mm of the bone. The increase in contact area, intertrabecular anchorage and particle bracing could be responsible for the increase in friction. Optimization of particle shape and size based on the patient's individual bone microstructure could further increase frictional resistance. Bone densification has the potential to improve the primary stability of uncemented implants.


Assuntos
Osso Esponjoso , Osseointegração , Interface Osso-Implante , Cabeça do Fêmur , Fricção , Humanos
4.
Case Rep Orthop ; 2021: 9989395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659855

RESUMO

We report a case of extended osteolysis, requiring a third revision of the left hip in an 85-year-old man 46 years after index operation. Major polyethylene (PE) wear occurred due to a missmatched combination of a bipolar Hastings head with a PE liner and head damage of the originally maintained stem. This case demonstrates that bipolar heads should not be used with PE cup liners since the respective bearing diameters cannot be guaranteed to match due to missing specifications. Furthermore, putting a Hastings head on an already damaged head of the stem should be omitted and rather the stem should initially be revised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA