Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Angew Chem Int Ed Engl ; 63(10): e202318530, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38196070

RESUMO

Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Camundongos , Animais , Eficácia de Vacinas , Neoplasias/patologia , Imunoterapia/métodos , Adjuvantes Imunológicos/farmacologia , Glutationa , Células Dendríticas , Camundongos Endogâmicos C57BL , Ovalbumina
2.
J Neuroinflammation ; 18(1): 131, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116706

RESUMO

BACKGROUND: Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies. During disease progression, abnormally phosphorylated forms of tau aggregate and accumulate into neurofibrillary tangles, leading to synapse loss, neuroinflammation, and neurodegeneration. Thus, targeting of tau pathology is expected to be a promising strategy for AD treatment. METHODS: The effect of rutin on tau aggregation was detected by thioflavin T fluorescence and transmission electron microscope imaging. The effect of rutin on tau oligomer-induced cytotoxicity was assessed by MTT assay. The effect of rutin on tau oligomer-mediated the production of IL-1ß and TNF-α in vitro was measured by ELISA. The uptake of extracellular tau by microglia was determined by immunocytochemistry. Six-month-old male Tau-P301S mice were treated with rutin or vehicle by oral administration daily for 30 days. The cognitive performance was determined using the Morris water maze test, Y-maze test, and novel object recognition test. The levels of pathological tau, gliosis, NF-kB activation, proinflammatory cytokines such as IL-1ß and TNF-α, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunolabeling, immunoblotting, or ELISA. RESULTS: We showed that rutin, a natural flavonoid glycoside, inhibited tau aggregation and tau oligomer-induced cytotoxicity, lowered the production of proinflammatory cytokines, protected neuronal morphology from toxic tau oligomers, and promoted microglial uptake of extracellular tau oligomers in vitro. When applied to Tau-P301S mouse model of tauopathy, rutin reduced pathological tau levels, regulated tau hyperphosphorylation by increasing PP2A level, suppressed gliosis and neuroinflammation by downregulating NF-kB pathway, prevented microglial synapse engulfment, and rescued synapse loss in mouse brains, resulting in a significant improvement of cognition. CONCLUSION: In combination with the previously reported therapeutic effects of rutin on Aß pathology, rutin is a promising drug candidate for AD treatment based its combinatorial targeting of tau and Aß.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/prevenção & controle , Rutina/farmacologia , Rutina/uso terapêutico , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Microscopia Eletrônica de Transmissão , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Rutina/administração & dosagem , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
J Nanobiotechnology ; 18(1): 160, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160377

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. No disease-modifying strategy to prevent or delay AD progression currently exists. Aß oligomers (AßOs), rather than monomers or fibrils, are considered as the primary neurotoxic species. Therapeutic approaches that direct against AßOs and promote Aß clearance may have great value for AD treatment. RESULTS: We here reported a multifunctional superparamagnetic iron oxide nanoparticle conjugated with Aß oligomer-specific scFv antibody W20 and class A scavenger receptor activator XD4 (W20/XD4-SPIONs). Besides the diagnostic value, W20/XD4-SPIONs retained the anti-Aß properties of W20 and XD4 by inhibiting Aß aggregation, attenuating AßO-induced cytotoxicity and increasing microglial phagocytosis of Aß. When applied to APP/PS1 mice, W20/XD4-SPIONs significantly rescued cognitive deficits and alleviated neuropathology of AD mice. CONCLUSION: These results suggest that W20/XD4-SPIONs show therapeutic benefits for AD. In combination with the early diagnostic property, W20/XD4-SPIONs present as a promising agent for early-stage AD diagnosis and intervention.


Assuntos
Doença de Alzheimer/terapia , Nanopartículas Magnéticas de Óxido de Ferro/química , Receptores Depuradores/química , Anticorpos de Cadeia Única/química , Doença de Alzheimer/diagnóstico , Amiloide , Peptídeos beta-Amiloides/farmacologia , Animais , Encéfalo/patologia , Citocinas , Cinética , Masculino , Camundongos , Camundongos Transgênicos , Microglia , Fragmentos de Peptídeos/farmacologia , Fagocitose
4.
Nanomedicine ; 28: 102223, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32422220

RESUMO

Personalized cancer vaccine which targets neoepitopes shows great promise for cancer treatment. However, rapid preparation is a critical challenge for clinical application of personalized cancer vaccine. Genetic recombination and chemical modification are a time-consuming "trial and error" pattern for making vaccines. Here we first constructed a platform for peptide vaccine preparation by inserting SpyCatcher into the major immunodominant region (MIR) of hepatitis B core protein (HBc) (1-183). The resulted recombinant protein HBc(1-183)-SpyCatcher (HBc(1-183)-S) assembled to virus-like particles (VLPs) and readily bound to SpyTag conjugated with OVA epitope peptides by just mixing, forming HBc(1-183)-S-OVA. HBc(1-183)-S-OVA VLPs effectively induced dendritic cell maturation. Our further results indicated that HBc(1-183)-S-OVA VLPs vaccination inhibited tumor growth in both prophylactic and treatment ways in E.G7-OVA tumor bearing mice by generating significant OVA-specific cytotoxic T lymphocyte responses. Our study provides a simple, rapid, efficient and universal HBc-based platform for the preparation of personalized cancer vaccine.


Assuntos
Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Animais , Linhagem Celular , Difusão Dinâmica da Luz , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Medicina de Precisão/métodos , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599696

RESUMO

It is widely accepted that ß-amyloid oligomers (Aßos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aßos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aßos. We here review the mechanisms by which Aßos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca2+ homeostasis dysregulation and tau pathological induction. We also summarize the characteristics and pathogenicity such as the size, morphology and cytotoxicity of dimers, trimers, Aß*56 and spherical oligomers, and suggest that Aßos may play a different role at different phases of AD pathogenesis, resulting in differential consequences on neuronal synaptotoxicity and survival. It is warranted to investigate the temporal sequence of Aßos in AD human brain and examine the relationship between different Aßos and cognitive impairment.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Agregação Patológica de Proteínas , Doença de Alzheimer/metabolismo , Animais , Humanos
6.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212758

RESUMO

α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.


Assuntos
Doença de Parkinson/metabolismo , Multimerização Proteica , alfa-Sinucleína/metabolismo , Animais , Apoptose , Estresse do Retículo Endoplasmático , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Proteostase
7.
Neurobiol Dis ; 124: 202-217, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30481547

RESUMO

It has been suggested that aggregation of α-synuclein (α-syn) into oligomers leads to neurodegeneration in Parkinson's disease (PD), but intravenous immunoglobulin (IVIG) which contains antibodies against α-syn monomers and oligomers fails to treat PD mouse model. The reason may be because IVIG contains much low level of antibodies against α-syn, and of which only a small part can penetrate the blood-brain barrier, resulting in an extremely low level of effective antibodies in the brain, and limiting the beneficial effect of IVIG on PD mice. Here, we first isolated naturally occurring autoantibodies against α-syn (NAbs-α-syn) from IVIG. Our further investigation results showed that NAbs-α-syn inhibited α-syn aggregation and attenuated α-syn-induced cytotoxicity in vitro. Compared with vehicles, NAbs-α-syn significantly attenuated the memory and motor deficits by reducing the levels of soluble α-syn, total human α-syn and α-syn oligomers, decreasing the intracellular p-α-synser129 deposits and axonal pathology, inhibiting the microgliosis and astrogliosis, as well as the production of proinflammatory cytokines, increasing the levels of PSD95, synaptophysin and TH in the brain of A53T transgenic mice. These findings suggest that NAbs-α-syn overcomes the deficiency of IVIG and exhibits a promising therapeutic potential for the treatment of PD.


Assuntos
Autoanticorpos/administração & dosagem , Encéfalo/imunologia , Atividade Motora , Doença de Parkinson/imunologia , Memória Espacial , alfa-Sinucleína/imunologia , Animais , Autoanticorpos/isolamento & purificação , Encéfalo/patologia , Modelos Animais de Doenças , Imunização Passiva , Imunoglobulinas Intravenosas/isolamento & purificação , Camundongos Transgênicos , Microglia/imunologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/imunologia
8.
J Clin Gastroenterol ; 50(6): 506-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26600183

RESUMO

GOALS: To elucidate impact of insulin resistance (IR) on the response to interferon-α (IFN-α) therapy in chronic hepatitis B (CHB) patients. BACKGROUND: Metabolic factors influencing the virological response of CHB patients on IFN-α treatment are still unexplored. STUDY: Eighty CHB patients were treated with IFN-α for 48 weeks. The IR was evaluated by homeostasis model assessment of IR (HOMA-IR) before treatment. Viral load and biochemical parameters were measured at 12, 24, and 48 weeks after starting treatment, and then 24 weeks after the end of treatment. IFN-γ and tumor necrosis factor-α were tested at baseline and 12 weeks of treatment. RESULTS: Pretreatment HOMA-IR proved to be the only independent predictor of primary nonresponse, as well as the pretreatment HOMA-IR, viral load and primary nonresponse were independently associated with virological response at 24, 48 weeks of treatment and at the follow-up endpoint. The significant higher virological relapse rate in patients with IR was observed in patients with virological response at 48 weeks of treatment. The mean HOMA-IR was significantly lower in virological responders than in virological nonresponders. The secretion of IFN-γ and tumor necrosis factor-α was not induced in patients with IR at 12 weeks after IFN-α treatment. CONCLUSIONS: Our data suggest that IR is strongly associated with virological response, thus reflecting the important role played by metabolic factors in the viral kinetics during IFN-α treatment. These findings suggested clinical application of pretreatment HOMA-IR could enable treatment outcome to be predicted and treatment regimens to be determined.


Assuntos
Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Resistência à Insulina , Interferon-alfa/uso terapêutico , Adolescente , Adulto , Feminino , Seguimentos , Humanos , Interferon gama/metabolismo , Masculino , Fatores de Tempo , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Adulto Jovem
9.
Zhong Yao Cai ; 38(1): 53-7, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26214870

RESUMO

OBJECTIVE: To compare the effects of crude and wine-processed Rhei Radix et Rhizoma on upper-energizer disease and hepatic energy metabolism in mice. METHODS: The streptococcal pneumonia rats model and acetic acid burning mouth ulcers rats model were established and randomly divided into three groups: model group, crude Rhei Radix et Rhizoma group and wine-processed Rhei Radix et Rhizoma group. The pathologic changes were observed after the rats had been administrated with water extracts of crude and wine-processed Rhei Radix et Rhizoma respectively. The normal ICR mice were randomly divided into three groups: control group, crude Rhei Radix et Rhizoma group and wine-processed Rhei Radix et Rhizoma group. The influence of water extracts of crude and wine-processed Rhei Radix et Rhizoma on the activities of Na+, K-ATPase, Ca2+ -ATPase and succinic dehydrogenase(SDH) in the mice were compared. RESULTS: Compared with the crude one,the wine-processed Rhei Radix et Rhizoma significantly decreased the inflammation scores (P <0. 05), and promoted the tissue repair of acetic acid burning mouth ulcers rats model. The wine-processed one could also obviously reduce and normalize the level of leucocyte and neutrophilic granulocyte, lower the TNF-α level (P <0. 05), and relieve inflammatory exudation of the lung tissue. The inhibitory effects of wine-processed Rhei Radix et Rhizoma on the activities of SDH, Ca2+-ATPase and Na+, K + -ATPase were weaker than those of the crude one (P > 0. 05). CONCLUSION: After having been processed with wine, the efficacy of Rhei Radix et Rhizoma on upper-energizer disease is enhanced, and the inhibition on the activity of energy metabolism enzyme in liver tends to be weakened.


Assuntos
Medicamentos de Ervas Chinesas/química , Fígado/efeitos dos fármacos , Fígado/enzimologia , Rheum/química , Vinho , Adenosina Trifosfatases/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético , Camundongos , Camundongos Endogâmicos ICR , Raízes de Plantas/química , Ratos , Rizoma/química , Fator de Necrose Tumoral alfa/metabolismo
10.
Eur J Pharmacol ; 970: 176491, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503399

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aß) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aß oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aß is derived from the sequential cleavage of amyloid-ß precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aß generation and anti-Aß aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aß production by reducing ß-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aß oligomer formation by directly binding to Aß. Moreover, YCC31 could attenuate Aß-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Citocinas , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucosídeos/uso terapêutico
11.
Acta Neuropathol Commun ; 12(1): 66, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654316

RESUMO

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Albumina Sérica , Tauopatias , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Elongases de Ácidos Graxos/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Proteínas tau/metabolismo , Tauopatias/patologia , Tauopatias/metabolismo
12.
Transl Neurodegener ; 13(1): 39, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095921

RESUMO

BACKGROUND: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.


Assuntos
Doença de Alzheimer , Endodesoxirribonucleases , Neurônios , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilação , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Doença de Alzheimer/patologia , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/metabolismo , Camundongos Transgênicos , DNA/genética , Masculino , Feminino , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL
13.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589400

RESUMO

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

14.
Chem Sci ; 14(35): 9496-9502, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712017

RESUMO

An axially chiral styrene-based organocatalyst, featuring a combination of axially chiral styrene-based structure and a pyrrole ring, has been designed and synthesized. This catalyst demonstrates remarkable capabilities in producing a wide range of densely substituted spirooxindoles that feature an alkyne-substituted quaternary stereogenic center. These spirooxindoles are generated through mild cascade Michael/cyclization reactions, resulting in high conversion rates and exceptional enantioselectivity. Our catalytic model, based on experiments, X-ray structure analysis and DFT calculations suggests that chiral matched π-π interactions and multiple H-bonds between the organocatalyst and substrates play significant roles in controlling the stereoselectivity of the reaction.

15.
MedComm (2020) ; 4(5): e371, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37750090

RESUMO

Aged male patients are more vulnerable to severe or critical symptoms of COVID-19, but the underlying mechanism remains elusive. In this study, we analyzed previously published scRNA-seq data from a large cohort of COVID-19 patients, castrated and regenerated mice, and bulk RNA-seq of a RNAi library of 400 genes, and revealed that both immunity and OXPHOS displayed cell-type-, sex-, and age-related variation in the severe or critical COVID-19 patients during disease progression, with a more prominent increase in immunity and decrease in OXPHOS in myeloid cells in the males relative to the females (60-69 years old). Male severe or critical patients above 70 years old were an exception in that the compromised negative correlation between OXPHOS and immunity in these patients was associated with its disordered transcriptional regulation. Finally, the expression levels of OXPHOS and androgens were revealed to be positively correlated, and the responses of macrophages to android fluctuation were more striking than other types of detected immune cells in the castrated mice model. Therefore, the interplay of OXPHOS and immunity displayed a cell-type-specific, age-related, and sex-biased pattern, and the underlying potential regulatory role of the hormonal milieu should not be neglected.

16.
Signal Transduct Target Ther ; 8(1): 30, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693826

RESUMO

Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aß-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aß, antibody, and complement. Notably, anti-Aß antibodies without Fc fragment, or with blockage of CR3 or FcγRIIb, did not exert these adverse effects. Consistently, Aß-targeting antibodies, but not their Fab fragments, significantly induced acute microglial synapse removal and rapidly exacerbated cognitive deficits and neuroinflammation in APP/PS1 mice post-treatment, whereas the memory impairments in mice were gradually rescued thereafter. Since the recovery rate of synapses in humans is much lower than that in mice, our findings may clarify the variances in the preclinical and clinical studies assessing AD immunotherapies. Therefore, Aß-targeting antibodies lack of Fc fragment, or with reduced Fc effector function, may not induce microglial synaptic pruning, providing a safer and more efficient therapeutic alternative for passive immunotherapy for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Disfunção Cognitiva/patologia , Sinapses/patologia , Anticorpos/uso terapêutico , Cognição
17.
Cell Rep ; 42(6): 112624, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37302068

RESUMO

Amyloid-ß (Aß) plays an important role in the neuropathology of Alzheimer's disease (AD), but some factors promoting Aß generation and Aß oligomer (Aßo) neurotoxicity remain unclear. We here find that the levels of ArhGAP11A, a Ras homology GTPase-activating protein, significantly increase in patients with AD and amyloid precursor protein (APP)/presenilin-1 (PS1) mice. Reducing the ArhGAP11A level in neurons not only inhibits Aß generation by decreasing the expression of APP, PS1, and ß-secretase (BACE1) through the RhoA/ROCK/Erk signaling pathway but also reduces Aßo neurotoxicity by decreasing the expressions of apoptosis-related p53 target genes. In APP/PS1 mice, specific reduction of the ArhGAP11A level in neurons significantly reduces Aß production and plaque deposition and ameliorates neuronal damage, neuroinflammation, and cognitive deficits. Moreover, Aßos enhance ArhGAP11A expression in neurons by activating E2F1, which thus forms a deleterious cycle. Our results demonstrate that ArhGAP11A may be involved in AD pathogenesis and that decreasing ArhGAP11A expression may be a promising therapeutic strategy for AD treatment.


Assuntos
Doença de Alzheimer , Proteínas Ativadoras de GTPase , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Presenilina-1/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
18.
Biochim Biophys Acta ; 1814(12): 1703-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21979582

RESUMO

Increasing evidence indicates that amyloid aggregates, including oligomers, protofibrils or fibrils, are pivotal toxins in the pathogenesis of many amyloidoses such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease, prion-related diseases, type 2 diabetes and hereditary renal amyloidosis. Various oligomers assembled from different amyloid proteins share common structures and epitopes. Here we present data indicating that two oligomer-specific single chain variable fragment (scFv) antibodies isolated from a naïve human scFv library could conformation-dependently recognize oligomers assembled from α-synuclein, amylin, insulin, Aß1-40, prion peptide 106-126 and lysozyme, and fibrils from lysozyme. Further investigation showed that both scFvs inhibited the fibrillization of α-synuclein, amylin, insulin, Aß1-40 and prion peptide 106-126, and disaggregated their preformed fibrils. However, they both promoted the aggregation of lysozyme. Nevertheless, the two scFv antibodies could attenuate the cytotoxicity of all amyloids tested. Moreover, the scFvs recognized the amyloid oligomers in all types of plaques, Lewy bodies and amylin deposits in the brain tissues of AD and PD patients and the pancreas of type 2 diabetes patients respectively, and showed that most amyloid fibril deposits were colocalized with oligomers in the tissues. Such conformation-dependent scFv antibodies may have potential application in the investigation of aggregate structures, the mechanisms of aggregation and cytotoxicity of various amyloids, and in the development of diagnostic and therapeutic reagents for many amyloidoses.


Assuntos
Amiloide/imunologia , Amiloide/metabolismo , Amiloidose/metabolismo , Domínios e Motivos de Interação entre Proteínas/imunologia , Anticorpos de Cadeia Única/metabolismo , Amiloide/química , Amiloidose/patologia , Reações Antígeno-Anticorpo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica/imunologia , Anticorpos de Cadeia Única/imunologia , Distribuição Tecidual , Células Tumorais Cultivadas
19.
Neurobiol Dis ; 46(3): 701-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22426388

RESUMO

Alzheimer's disease (AD) is characterized by progressive memory loss due to extracellular senile plaques and intracellular neurofibrillary tangles. The toxic ß-amyloid (Aß) aggregates that form in AD can induce the overproduction of reactive oxygen species (ROS), nitric oxide (NO), and proinflammatory cytokines. These Aß aggregates likely play a pivotal role in the onset and progression of AD. Reducing Aß generation, inhibiting Aß toxicity, and improving Aß clearance are promising therapeutic strategies for AD. The present paper is the first to reveal a heptapeptide (XD4) isolated from a Ph.D.-C7C library through phage display that significantly inhibited Aß cytotoxicity, increased the microglial phagocytosis of Aß, decreased the Aß-induced generation of ROS and NO, and attenuated the disequilibrium of calcium homeostasis in vitro. Remarkably, XD4 also attenuated memory deficits in ß-amyloid precursor protein/presenilin 1 (APPswe/PS1dE9) transgenic mice, and reduced amyloid plaque burden and Aß40/42 levels. The results of the present study indicate that this peptide, which specifically targets Aß, may be a promising new therapy for patients exhibiting cognitive impairment and increased Aß burden.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Transtornos da Memória/tratamento farmacológico , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/toxicidade , Peptídeos/farmacologia , Fagocitose/efeitos dos fármacos , Doença de Alzheimer/genética , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Corantes , DNA/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Biblioteca de Peptídeos , Espécies Reativas de Oxigênio/metabolismo , Sais de Tetrazólio , Tiazóis
20.
J Dent Sci ; 17(3): 1274-1280, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784137

RESUMO

Background/purpose: There is no consensus to date on how many repetitive pecking motions at working length (WL) should be regarded as optimal during instrumentation. Therefore, this study aimed to evaluate the effect of pecking frequency at WL on the volume of apically extruded debris using three single-file systems in curved, oval-shaped canals. Materials and methods: Forty-five single-rooted mandibular premolars with curved, oval-shaped canals were prescanned by micro-computed tomography, anatomically paired-matched, and randomly divided among three groups (n = 15 each): Reciproc Blue (RB), WaveOne Gold (WOG) and XP-endo Shaper (XPS). Samples were embedded in agarose gel to collect extruded debris. After preparation to the WL, each sample was rescanned after one, two, four, 10, and 20 pecking motions at WL, respectively. The debris volume was innovatively calculated by a modification of an existing method using micro-computed tomography. The apical preparation size was also measured. Data were compared using a two-way repeated-measures analysis of variance. Results: All single-file systems extruded debris apically, irrespective of the pecking frequency at WL. The extruded debris volume correlated positively with the minor foramen size (P < 0.05); both increased with pecking frequency for each single-file system (P < 0.05). The minor foramen size corresponded to the instrument tip size when reaching the WL once. Conclusion: To produce less debris extrusion and obtain a predictable foramen size corresponding to the instrument tip size, a single pecking motion may be preferred when using single-file systems. Caution should be exercised when applying the current results to clinical situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA