Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(3): 101293, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39100914

RESUMO

Adeno-associated viruses (AAVs) are gaining traction as delivery vehicles for gene therapy although the molecular understanding of AAV-transgene release is still limited. Typically, the process of viral uncoating is investigated (in vitro) through thermal stress, revealing capsid disintegration at elevated temperatures. To assess the (in)stability of different empty and filled AAV preparations, we used the light-scattering-based interferometric microscopy technique of mass photometry that, on a single-particle basis, determines the molecular weight of AAVs. By introducing a heat-stable DNA plasmid as an internal standard, we quantitatively probed the impact of heat on AAVs. Generally, empty AAVs exhibited greater heat resistance than genome-filled particles. Our data also indicate that upon DNA release, the capsids do not transform into empty AAVs, but seem to aggregate or disintegrate. Strikingly, some AAVs exhibited an intermediate state with disrupted capsids but preserved bound genome, a feature that experimentally only emerged following incubation with a nuclease. Our data demonstrate that the thermal uncoating process is highly AAV specific (i.e., can be influenced by serotype, genome, host system). We argue that nuclease treatment in combination with MP can be used as an additional analytical tool for assessing structural integrity of recombinant and/or clinical AAV vectors.

2.
Mol Ther Methods Clin Dev ; 27: 491-501, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36458114

RESUMO

Adeno-associated viruses (AAVs) are useful vehicles for gene therapy because of their stability, low immunogenicity. and non-pathogenicity. However, disparity in AAV sample preparations (e.g., in capsid composition, DNA packaging, and impurities) gives rise to product heterogeneity, with possibly undesired effects on gene delivery. Ideally, AAV production should be with full control of AAV structure and genetic payload. Therefore, robust, efficient, and low material consuming methods are essential to characterize AAVs. Here, we use two emerging single-molecule techniques, mass photometry and Orbitrap-based charge-detection mass spectrometry, and show how they may efficiently and accurately characterize AAVs. We were able to resolve heterogeneous pools of particles, evaluating AAVs from two different serotypes (AAV8 and AAV2), produced by three independent production platforms, either lacking a genome or packed with a transgene. Together our data confirm that the different AAV production methods result in rather different and diverse AAV particle distributions. Especially for the packed AAVs, frequently additional subspecies were observed, next to the expected packed genome, mostly resulting from under- or overpackaging of genome material and/or residual empty particles. This work further establishes that both these single-particle techniques may become valuable tools in characterizing AAVs before they are used in gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA