RESUMO
Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were â¼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (â¼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.
Assuntos
Cannabis , Dronabinol , Adolescente , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Espectrometria de Massas , Aerossóis/metabolismoRESUMO
The reinforcing efficacy of cocaine is largely determined by its capacity to inhibit the dopamine transporter (DAT), and emerging evidence suggests that differences in cocaine potency are linked to several symptoms of cocaine use disorder. Despite this evidence, the neural processes that govern cocaine potency in vivo remain unclear. In male rats, we used chemogenetics with intra-VTA microinfusions of the agonist clozapine-n-oxide to bidirectionally modulate dopamine neurons. Using ex vivo fast scan cyclic voltammetry, pharmacological probes of the DAT, biochemical assessments of DAT membrane availability and phosphorylation, and cocaine self-administration, we tested the effects of chemogenetic manipulations on cocaine potency at distal DATs in the nucleus accumbens as well as the behavioral economics of cocaine self-administration. We discovered that chemogenetic manipulation of dopamine neurons produced rapid, bidirectional modulation of cocaine potency at DATs in the nucleus accumbens. We then provided evidence that changes in cocaine potency are associated with alterations in DAT affinity for cocaine and demonstrated that this change in affinity coincides with DAT conformation biases and changes in DAT phosphorylation state. Finally, we showed that chemogenetic manipulation of dopamine neurons alters cocaine consumption in a manner consistent with changes in cocaine potency at distal DATs. Based on the spatial and temporal constraints inherent to our experimental design, we posit that changes in cocaine potency are driven by alterations in dopamine neuron activity. When considered together, these observations provide a novel mechanism through which GPCRs regulate cocaine's pharmacological and behavioral effects.SIGNIFICANCE STATEMENT Differences in the pharmacological effects of cocaine are believed to influence the development and progression of cocaine use disorder. However, the biological and physiological processes that determine sensitivity to cocaine remain unclear. In this work, we use a combination of chemogenetics, fast scan cyclic voltammetry, pharmacology, biochemistry, and cocaine self-administration with economic demand analysis to demonstrate a novel mechanism by which cocaine potency is determined in vivo These studies identify a novel process by which the pharmacodynamics of cocaine are derived in vivo, and thus this work has widespread implications for understanding the mechanisms that regulate cocaine consumption across stages of addiction.
Assuntos
Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Clozapina/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Agonistas de Dopamina/farmacologia , Masculino , Microinjeções , Fosforilação , Ratos , Ratos Long-Evans , Autoadministração , Área Tegmentar VentralRESUMO
Ventral tegmental area (VTA) dopamine (DA) neurons perform diverse functions in motivation and cognition, but their precise roles in addiction-related behaviors are still debated. Here, we targeted VTA DA neurons for bidirectional chemogenetic modulation during specific tests of cocaine reinforcement, demand, and relapse-related behaviors in male rats, querying the roles of DA neuron inhibitory and excitatory G-protein signaling in these processes. Designer receptor stimulation of Gq signaling, but not Gs signaling, in DA neurons enhanced cocaine seeking via functionally distinct projections to forebrain limbic regions. In contrast, engaging inhibitory Gi/o signaling in DA neurons blunted the reinforcing and priming effects of cocaine, reduced stress-potentiated reinstatement, and altered behavioral strategies for cocaine seeking and taking. Results demonstrate that DA neurons play several distinct roles in cocaine seeking, depending on behavioral context, G-protein-signaling cascades, and DA neuron efferent targets, highlighting their multifaceted roles in addiction.SIGNIFICANCE STATEMENT G-protein-coupled receptors are crucial modulators of ventral tegmental area (VTA) dopamine neuron activity, but how this metabotropic signaling impacts the complex roles of dopamine in reward and addiction is poorly understood. Here, we bidirectionally modulate dopamine neuron G-protein signaling with DREADDs (designer receptors exclusively activated by designer drugs) during a variety of cocaine-seeking behaviors, revealing nuanced, pathway-specific roles in cocaine reward, effortful seeking, and relapse-like behaviors. Gq and Gs stimulation activated dopamine neurons, but only Gq stimulation robustly enhanced cocaine seeking. Gi/o inhibitory signaling reduced some, but not all, types of cocaine seeking. Results show that VTA dopamine neurons modulate numerous distinct aspects of cocaine addiction- and relapse-related behaviors, and point to potential new approaches for intervening in these processes to treat addiction.
Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Área Tegmentar Ventral/fisiopatologia , Animais , Comportamento Animal , Transtornos Relacionados ao Uso de Cocaína/psicologia , Comportamento de Procura de Droga , Proteínas de Ligação ao GTP/fisiologia , Sistema Límbico/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Ratos , Ratos Transgênicos , Recidiva , Recompensa , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/psicologia , Área Tegmentar Ventral/efeitos dos fármacosRESUMO
Rationale: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective: We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
RESUMO
RATIONALE: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. OBJECTIVE: We determined how 14 daily THC injections (5 mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. METHODS: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impact probabilistic discounting. RESULTS: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. CONCLUSIONS: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
RESUMO
RATIONALE: Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES: Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS: Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS: All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS: Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Assuntos
Clozapina , Drogas Desenhadas , Ratos , Masculino , Feminino , Animais , Área Tegmentar Ventral , Neurônios Dopaminérgicos/metabolismo , Clozapina/farmacologiaRESUMO
Rationale: Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, most commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. Objectives: Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. Methods: Male and female TH:Cre+ rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons in TH:Cre+ rats. Rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in a counterbalanced order. Results: All three CNO doses reduced operant food seeking in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest tested J60 dose significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre+ rats were correlated and were present in both sexes. Conclusions: Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
RESUMO
Adult rats emit ultrasonic vocalizations (USVs) related to their affective states, potentially providing information about their subjective experiences during behavioral neuroscience experiments. If so, USVs might provide an important link between invasive animal preclinical studies and human studies in which subjective states can be readily queried. Here, we induced USVs in male and female Long Evans rats using acute amphetamine (2 mg/kg), and asked how reversibly inhibiting nucleus accumbens neurons using designer receptors exclusively activated by designer drugs (DREADDs) impacts USV production. We analyzed USV characteristics using "Deepsqueak" software, and manually categorized detected calls into four previously defined subtypes. We found that systemic administration of the DREADD agonist clozapine-n-oxide, relative to vehicle in the same rats, suppressed the number of frequency-modulated and trill-containing USVs without impacting high frequency, unmodulated (flat) USVs, nor the small number of low-frequency USVs observed. Using chemogenetics, these results thus confirm that nucleus accumbens neurons are essential for production of amphetamine-induced frequency-modulated USVs. They also support the premise of further investigating the characteristics and subcategories of these calls as a window into the subjective effects of neural manipulations, with potential future clinical applications.
RESUMO
Δ9-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents. However, though the relevance of these studies depends upon human-relevant dosing, surprisingly little is known about THC pharmacology and its effects on behavior and brain activity in adolescent rodents-especially in females. Here, we conducted a systematic investigation of THC pharmacokinetics, metabolism and distribution in blood and brain, and of THC effects upon behavior and neural activity in adolescent Long Evans rats of both sexes. We administered THC during an early-middle adolescent window (postnatal days 27-45) in which the brain may be particularly sensitive to developmental perturbation by THC. We determined the pharmacokinetic profile of THC and its main first-pass metabolites (11-hydroxy-THC and 11-nor-9-carboxy-THC) in blood and brain following acute injection (0.5 or 5 mg/kg, intraperitoneal). We also evaluated THC effects on behavioral assays of anxiety, locomotion, and place conditioning, as well as c-Fos expression in 14 brain regions. Confirming previous work, we find marked sex differences in THC metabolism, including a female-specific elevation in the bioactive metabolite 11-hydroxy-THC. Furthermore, we find dose-dependent and sex-dependent effects on behavior, neural activity, and functional connectivity across multiple nodes of brain stress and reward networks. Our findings are relevant for interpreting results of rat adolescent THC exposure studies, and may lend new insights into how THC impacts the brain in a sex-dependent manner.
Assuntos
Dronabinol , Alucinógenos , Animais , Encéfalo , Dronabinol/farmacologia , Feminino , Masculino , Ratos , Ratos Long-Evans , Estudos RetrospectivosRESUMO
Addiction is a chronic relapsing disorder, and during recovery many people experience several relapse events as they attempt to voluntarily abstain from drug. New preclinical relapse models have emerged that capture this common human experience, and mounting evidence indicates that resumption of drug seeking after voluntary abstinence recruits neural circuits distinct from those recruited during reinstatement after experimenter-imposed abstinence, or abstinence due to extinction training. Ventral pallidum (VP), a key limbic node involved in drug seeking, has well-established roles in conventional reinstatement models tested following extinction training, but it is unclear whether this region also participates in more translationally relevant models of relapse. Here we show that chemogenetic inhibition of VP neurons decreased cocaine-, context-, and cue-induced relapse tested after voluntary, punishment-induced abstinence. This effect was strongest in the most compulsive, punishment-resistant rats, and reinstatement was associated with neural activity in anatomically defined VP subregions. VP inhibition also attenuated the propensity of rats to display "abortive lever pressing," a species-typical risk assessment behavior seen here during punished drug taking, likely resulting from concurrent approach and avoidance motivations. These results indicate that VP, unlike other connected limbic brain regions, is essential for resumption of drug seeking after voluntary abstinence. Since VP inhibition effects were strongest in the most compulsively cocaine-seeking individuals, this may also indicate that VP plays a particularly important role in the most pathological, addiction-like behavior, making it an attractive target for future therapeutic interventions.
Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Prosencéfalo Basal/fisiologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Punição , Animais , Condicionamento Operante/efeitos dos fármacos , Feminino , Masculino , Ratos Long-Evans , RecidivaRESUMO
Early-life adversity increases the risk for emotional disorders such as depression and schizophrenia. Anhedonia, thought to be a core feature of these disorders, is provoked by our naturalistic rodent model of childhood adversity (i.e., rearing pups for one week in cages with limited bedding and nesting, LBN). Drug use and addiction are highly comorbid with psychiatric disorders featuring anhedonia, yet effects of LBN on drug-seeking behavior and the reward and stress-related circuits that underlie it remain unknown. Here we examined the effects of LBN on cocaine intake and seeking, using a battery of behavioral tests measuring distinct aspects of cocaine reward, and for comparison, chocolate intake. We also examined activation of neurons within the pleasure/reward and stress circuits following cocaine in LBN and control rats. Early-life adversity reduced spontaneous intake of palatable chocolate, extending prior reports of sucrose and social-play anhedonia. In a within-session cocaine behavioral economic test, LBN rats self-administered lower dosages of cocaine under low-effort conditions, consistent with a reduced hedonic set-point for cocaine, and potentially anhedonia. In contrast, cocaine demand elasticity was not consistently affected, indicating no major changes in motivation to maintain preferred cocaine blood levels. These changes were selective, as LBN did not cause an overt anxiety-like phenotype, nor did it affect sensitivity to self-administered cocaine dose, responding for cocaine under extinction conditions, cocaine- or cue-induced reinstatement of cocaine seeking, or locomotor response to acute cocaine. However, high Fos expression was seen after cocaine in both reward- and stress-related brain regions of LBN rats, including nucleus accumbens core, central amygdala, and lateral habenula. In contrast, hypothalamic orexin neuron activation after cocaine was significantly attenuated in LBN rats. Together, these findings demonstrate enduring effects of early-life adversity on both reward- and fear/anxiety-related neural circuits, as well as anhedonia-like reductions in consumption of natural and drug rewards.