Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 1): 119802, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147188

RESUMO

Forest disturbance regimes across biomes are being altered by interactive effects of global change. Establishing baselines for assessing change requires detailed quantitative data on past disturbance events, but such data are scarce and difficult to obtain over large spatial and temporal scales. The integration of remote sensing with dense time series analysis and cloud computing platforms is enhancing the ability to monitor historical disturbances, and especially non-stand replacing events along climatic gradients. Since the integration of such tools is still scarce in Mediterranean regions, here, we combine dense Landsat time series and the Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA) method to monitor forest disturbance in continental Spain from 1985 to 2023. We adapted the CCDC-SMA method for improved disturbance detection creating new spectral libraries representative of the study region, and quantified the year, month, severity, return interval, and type of disturbance (stand replacing, non-stand replacing) at a 30 m resolution. In addition, we characterised forest disturbance regimes and trends (patch size and severity, and frequency of events) of events larger than 0.5 ha at the national scale by biome (Mediterranean and temperate) and forest type (broadleaf, needleleaf and mixed). We quantified more than 2.9 million patches of disturbed forest, covering 4.6 Mha over the region and period studied. Forest disturbances were on average larger but less severe in the Mediterranean than in the temperate biome, and significantly larger and more severe in needleleaf than in mixed and broadleaf forests. Since the late 1980s, forest disturbances have decreased in size and severity while increasing in frequency across all biomes and forest types. These results have important implications as they confirm that disturbance regimes in continental Spain are changing and should therefore be considered in forest strategic planning for policy development and implementation.

2.
Environ Res ; 259: 119432, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944104

RESUMO

The Mediterranean Basin has experienced substantial land use changes as traditional agriculture decreased and population migrated from rural to urban areas, which have resulted in a large forest cover increase. The combination of Landsat time series, providing spectral information, with lidar, offering three-dimensional insights, has emerged as a viable option for the large-scale cartography of forest structural attributes across large time spans. Here we develop and test a comprehensive framework to map forest above ground biomass, canopy cover and forest height in two regions spanning the most representative biomes in the peninsular Spain, Mediterranean (Madrid region) and temperate (Basque Country). As reference, we used lidar-based direct estimates of stand height and forest canopy cover. The reference biomass and volume were predicted from lidar metrics. Landsat time series predictors included annual temporal profiles of band reflectance and vegetation indices for the 1985-2023 period. Additional predictor variables including synthetic aperture radar, disturbance history, topography and forest type were also evaluated to optimize forest structural attributes retrieval. The estimates were independently validated at two temporal scales, i) the year of model calibration and ii) the year of the second lidar survey. The final models used as predictor variables only Landsat based metrics and topographic information, as the available SAR time-series were relatively short (1991-2011) and disturbance information did not decrease the estimation error. Model accuracies were higher in the Mediterranean forests when compared to the temperate forests (R2 = 0.6-0.8 vs. 0.4-0.5). Between the first (1985-1989) and the last (2020-2023) decades of the monitoring period the average forest cover increased from 21 ± 2% to 32 ± 1%, mean height increased from 6.6 ± 0.43 m to 7.9 ± 0.18 m and the mean biomass from 31.9 ± 3.6 t ha-1 to 50.4 ± 1 t ha-1 for the Mediterranean forests. In temperate forests, the average canopy cover increased from 55 ± 4% to 59 ± 3%, mean height increased from 15.8 ± 0.77 m to 17.3 ± 0.21m, while the growing stock volume increased from 137.8 ± 8.2 to 151.5 ± 3.8 m3 ha-1. Our results suggest that multispectral data can be successfully linked with lidar to provide continuous information on forest height, cover, and biomass trends.


Assuntos
Biomassa , Monitoramento Ambiental , Florestas , Espanha , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA