Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 118203, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001087

RESUMO

While most chemical bonds weaken under the action of mechanical force (called slip bond behavior), nature has developed bonds that do the opposite: their lifetime increases as force is applied. While such catch bonds have been studied quite extensively at the single molecule level and in adhesive contacts, recent work has shown that they are also abundantly present as crosslinkers in the actin cytoskeleton. However, their role and the mechanism by which they operate in these networks have remained unclear. Here, we present computer simulations that show how polymer networks crosslinked with either slip or catch bonds respond to mechanical stress. Our results reveal that catch bonding may be required to protect dynamic networks against fracture, in particular for mobile linkers that can diffuse freely after unbinding. While mobile slip bonds lead to networks that are very weak at high stresses, mobile catch bonds accumulate in high stress regions and thereby stabilize cracks, leading to a more ductile fracture behavior. This allows cells to combine structural adaptivity at low stresses with mechanical stability at high stresses.

2.
Phys Rev Lett ; 131(25): 258202, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181345

RESUMO

In situ interfacial rheology and numerical simulations are used to investigate microgel monolayers in a wide range of packing fractions, ζ_{2D}. The heterogeneous particle compressibility determines two flow regimes characterized by distinct master curves. To mimic the microgel architecture and reproduce experiments, an interaction potential combining a soft shoulder with the Hertzian model is introduced. In contrast to bulk conditions, the elastic moduli vary nonmonotonically with ζ_{2D} at the interface, confirming long-sought predictions of reentrant behavior for Hertzian-like systems.

3.
Soft Matter ; 19(24): 4599, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37288567

RESUMO

Correction for 'Concentration and temperature dependent interactions and state diagram of dispersions of copolymer microgels' by José Ruiz-Franco et al., Soft Matter, 2023, 19, 3614-3628, https://doi.org/10.1039/D3SM00120B.

4.
Soft Matter ; 19(20): 3614-3628, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161724

RESUMO

We investigate by means of small angle neutron scattering experiments and numerical simulations the interactions and inter-particle arrangements of concentrated dispersions of copolymer poly(N-isopropylacrylamide)-poly(ethylene glycol methyl ether methacrylate) (PNIPAM-PEGMA) microgels across the volume phase transition (VPT). The scattering data of moderately concentrated dispersions are accurately modeled at all temperatures by using a star polymer form factor and static structure factors calculated from the effective potential obtained from simulations. Interestingly, for temperatures below the VPT temperature (VPTT), the radius of gyration and blob size of the particles significantly decrease with increasing the effective packing fraction in the non-overlapping regime. This is attributed to the presence of charges in the system associated with the use of an ionic initiator in the synthesis. Simulations using the experimentally corroborated interaction potential are used to explore the state diagram in a wide range of effective packing fractions. Below and slightly above the VPTT, the system undergoes an arrest transition mainly driven by the soft repulsion between the particles. Only well above the VPTT the system is found to phase separate before arresting. Our results highlight the versatility and potential of copolymer PNIPAM-PEGMA microgels to explore different kinds of arrested states balancing attraction and repulsion by changing temperature and packing fraction.

5.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38108485

RESUMO

Low-crosslinked polymer networks have recently been found to behave auxetically when subjected to small tensions, that is, their Poisson's ratio ν becomes negative. In addition, for specific state points, numerical simulations revealed that diamond-like networks reach the limit of mechanical stability, exhibiting values of ν = -1, a condition that we define as hyper-auxeticity. This behavior is interesting per se for its consequences in materials science but is also appealing for fundamental physics because the mechanical instability is accompanied by evidence of criticality. In this work, we deepen our understanding of this phenomenon by performing a large set of equilibrium and stress-strain simulations in combination with phenomenological elasticity theory. The two approaches are found to be in good agreement, confirming the above results. We also extend our investigations to disordered polymer networks and find that the hyper-auxetic behavior also holds in this case, still manifesting a similar critical-like behavior as in the diamond one. Finally, we highlight the role of the number density, which is found to be a relevant control parameter determining the elastic properties of the system. The validity of the results under disordered conditions paves the way for an experimental investigation of this phenomenon in real systems, such as hydrogels.

6.
J Chem Phys ; 158(7): 074905, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813705

RESUMO

The elasticity of disordered and polydisperse polymer networks is a fundamental problem of soft matter physics that is still open. Here, we self-assemble polymer networks via simulations of a mixture of bivalent and tri- or tetravalent patchy particles, which result in an exponential strand length distribution analogous to that of experimental randomly cross-linked systems. After assembly, the network connectivity and topology are frozen and the resulting system is characterized. We find that the fractal structure of the network depends on the number density at which the assembly has been carried out, but that systems with the same mean valence and same assembly density have the same structural properties. Moreover, we compute the long-time limit of the mean-squared displacement, also known as the (squared) localization length, of the cross-links and of the middle monomers of the strands, showing that the dynamics of long strands is well described by the tube model. Finally, we find a relation connecting these two localization lengths at high density and connect the cross-link localization length to the shear modulus of the system.

7.
J Chem Phys ; 150(2): 024905, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646712

RESUMO

A transition from solid-like to liquid-like behavior occurs when colloidal gels are subjected to a prolonged exposure to a steady shear. This phenomenon, which is characterized by a yielding point, is found to be strongly dependent on the packing fraction. However, it is not yet known how the effective inter-particle potential affects this transition. To this aim, we present a numerical investigation of the rheology of equilibrium gels in which a short-range depletion is complemented by a long-range electrostatic interaction. We observe a single yielding event in the stress-strain curve, occurring at a fixed strain. The stress overshoot is found to follow a power-law dependence on the Péclet number, with an exponent larger than that found in depletion gels, suggesting that its value may depend systematically on the underlying colloid-colloid interactions. We also establish a mapping between equilibrium states and steady states under shear, which allows us to identify the structural modifications induced by the presence of the shear. Remarkably, we find that steady states corresponding to the same Péclet number, obtained by different combinations of shear rate and solvent viscosity, show identical structural and rheological properties. Our results highlight the importance of understanding the coupling between colloidal interactions, solvent effects, and flow to be able to describe the microscopic organization of colloidal particles under shear.

8.
J Chem Phys ; 151(7): 074902, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438712

RESUMO

The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent. In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or from theoretical arguments. We hereby propose two different approaches. The first one simply extends the MPCD method by including in the simulations effective monomers with a given density profile, thus neglecting monomer-monomer interactions. The second one considers the macromolecule as a single penetrable soft colloid (PSC), which is permeated by an inhomogeneous distribution of solvent particles. By defining an appropriate set of rules to control the collision events between the solvent and the soft colloid, both linear and angular momenta are exchanged. We apply these methods to the case of linear chains and star polymers for varying monomer lengths and arm number, respectively, and compare the results for the dynamical properties with those obtained within monomer-resolved simulations. We find that the effective monomer method works well for linear chains, while the PSC method provides very good results for stars. These methods pave the way to extend MPCD treatments to complex macromolecular objects such as microgels or dendrimers and to work with soft colloids at finite concentrations.

9.
Eur Phys J E Soft Matter ; 41(7): 80, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29955976

RESUMO

The numerical investigation of the statics and dynamics of systems in non-equilibrium in general, and under shear flow in particular, has become more and more common. However, not all the numerical methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases. This is especially true for thermostats. Indeed, even though thermostats developed to work under equilibrium conditions sometimes display good agreement with rheology experiments, their performance rapidly degrades beyond weak dissipation and small shear rates. Here we focus on gauging the relative performances of three thermostats, Langevin, dissipative particle dynamics, and Bussi-Donadio-Parrinello under varying parameters and external conditions. We compare their effectiveness by looking at different observables and clearly demonstrate that choosing the right thermostat (and its parameters) requires a careful evaluation of, at least, temperature, density and velocity profiles. We also show that small modifications of the Langevin and DPD thermostats greatly enhance their performance in a wide range of parameters.

10.
Phys Chem Chem Phys ; 20(27): 18630-18638, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29955749

RESUMO

Colloidal mixtures represent a versatile model system to study transport in complex environments. They allow for a systematic variation of the control parameters, namely size ratio, total volume fraction and composition. We study the effects of these parameters on the dynamics of dense suspensions using molecular dynamics simulations and differential dynamic microscopy experiments. We investigate the motion of small particles through the matrix of large particles as well as the motion of large particles. A particular focus is on the coupling of the collective dynamics of small and large particles and on the different mechanisms leading to this coupling. For large size ratios, of about 1 : 5, and an increasing fraction of small particles, the dynamics of the two species become increasingly coupled and reflect the structure of the large particles. This is attributed to the dominant effect of the large particles on the motion of the small particles, which is mediated by the increasing crowding of the small particles. Furthermore, for moderate size ratios of about 1 : 3 and sufficiently high fractions of small particles, mixed cages are formed and hence the dynamics are also strongly coupled. Again, the coupling becomes weaker as the fraction of small particles is decreased. In this case, however, the collective intermediate scattering function of the small particles shows a logarithmic decay corresponding to a broad range of relaxation times.

12.
Front Cell Dev Biol ; 10: 931776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846368

RESUMO

Cells residing in living tissues apply forces to their immediate surroundings to promote the restructuration of the extracellular matrix fibres and to transmit mechanical signals to other cells. Here we use a minimalist model to study how these forces, applied locally by cell contraction, propagate through the fibrous network in the extracellular matrix. In particular, we characterize how the transmission of forces is influenced by the connectivity of the network and by the bending rigidity of the fibers. For highly connected fiber networks the stresses spread out isotropically around the cell over a distance that first increases with increasing contraction of the cell and then saturates at a characteristic length. For lower connectivity, however, the stress pattern is highly asymmetric and is characterised by force chains that can transmit stresses over very long distances. We hope that our analysis of force transmission in fibrous networks can provide a new avenue for future studies on how the mechanical feedback between the cell and the ECM is coupled with the microscopic environment around the cells.

13.
Nat Commun ; 13(1): 527, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082298

RESUMO

Against common sense, auxetic materials expand or contract perpendicularly when stretched or compressed, respectively, by uniaxial strain, being characterized by a negative Poisson's ratio ν. The amount of deformation in response to the applied force can be at most equal to the imposed one, so that ν = - 1 is the lowest bound for the mechanical stability of solids, a condition here defined as "hyper-auxeticity". In this work, we numerically show that ultra-low-crosslinked polymer networks under tension display hyper-auxetic behavior at a finite crosslinker concentration. At this point, the nearby mechanical instability triggers the onset of a critical-like transition between two states of different densities. This phenomenon displays similar features as well as important differences with respect to gas-liquid phase separation. Since our model is able to faithfully describe real-world hydrogels, the present results can be readily tested in laboratory experiments, paving the way to explore this unconventional phase behavior.

14.
Macromolecules ; 55(5): 1834-1843, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283539

RESUMO

We combine small-angle scattering experiments and simulations to investigate the internal structure and interactions of composite poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) microgels. At low temperatures the experimentally determined form factors and the simulated density profiles indicate a loose internal particle structure with an extended corona that can be modeled as a starlike object. With increasing temperature across the volumetric phase transition, the form factor develops an inflection that, using simulations, is interpreted as arising from a conformation in which PEG chains are incorporated in the interior of the PNIPAM network. This gives rise to a peculiar density profile characterized by two dense, separated regions, at odds with configurations in which the PEG chains reside on the surface of the PNIPAM core. The conformation of the PEG chains also have profound effects on the interparticle interactions: Although chains on the surface reduce the solvophobic attraction typically experienced by PNIPAM particles at high temperatures, PEG chains inside the PNIPAM network shift the onset of attractive interaction at even lower temperatures. Our results show that by tuning the morphology of the composite microgels, we can qualitatively change both their structure and their mutual interactions, opening the way to explore new collective behaviors of these objects.

15.
Macromolecules ; 54(8): 3769-3779, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34054144

RESUMO

Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g., chain-length and end-to-end distributions), we generate disordered phantom networks with different cross-linker concentrations C and initial densities ρinit and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same C, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands, and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming our interpretations.

16.
Sci Rep ; 6: 34743, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713479

RESUMO

Gene regulatory networks can be successfully modeled as Boolean networks. A much discussed hypothesis says that such model networks reproduce empirical findings the best if they are tuned to operate at criticality, i.e. at the borderline between their ordered and disordered phases. Critical networks have been argued to lead to a number of functional advantages such as maximal dynamical range, maximal sensitivity to environmental changes, as well as to an excellent tradeoff between stability and flexibility. Here, we study the effect of noise within the context of Boolean networks trained to learn complex tasks under supervision. We verify that quasi-critical networks are the ones learning in the fastest possible way -even for asynchronous updating rules- and that the larger the task complexity the smaller the distance to criticality. On the other hand, when additional sources of intrinsic noise in the network states and/or in its wiring pattern are introduced, the optimally performing networks become clearly subcritical. These results suggest that in order to compensate for inherent stochasticity, regulatory and other type of biological networks might become subcritical rather than being critical, all the most if the task to be performed has limited complexity.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA