Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Arthroplasty ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061399

RESUMO

BACKGROUND: Total knee arthroplasty (TKA) implants have continued to evolve to accommodate new understandings of knee mechanics. The medial-pivot implant is a newer design, which is intended to limit anterior-posterior translation in the medial compartment while allowing lateral compartment translation. However, evidence for a generalized medial-pivot characteristic across all activities is limited. The purpose of the study was to quantify and compare in vivo knee joint kinematics using high-speed stereo radiography during activities of daily living in patients who have undergone a TKA with a cruciate sacrificing medial-pivot implant to age-matched and sex-matched native controls. METHODS: Fifteen participants (7 patients, 4 women, mean age 70 years and 8 nonsymptomatic controls, 4 women, mean age 64 years) performed 6 functional tasks in high-speed stereo radiography: deep-knee lunge, chair rise, step down, gait, gait with 90° turn, and seated knee extension. Translational differences between groups (surgical versus control) were assessed for the medial and lateral condyle, while pivot location was normalized to subject-specific tibial plateau geometry. RESULTS: The surgical cohort displayed a more constrained medial condyle that provided greater stability of the medial compartment and did not result in the paradoxical anterior translation at mid-flexion angles during weight-bearing activities, but was associated with less condylar translation than native knees. Additionally, the transverse tibial pivot location occurs most commonly in the middle third of the tibial plateau and secondarily on the medial third. CONCLUSIONS: Some variability in pivot location occurs between activities and is more in nonsymptomatic, native knee controls.

2.
J Arthroplasty ; 38(10): 2068-2074, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37236287

RESUMO

BACKGROUND: Dynamic radiographic measurements of 3-dimensional (3-D) total knee arthroplasty (TKA) kinematics have provided important information for implant design and surgical technique for over 30 years. However, current methods of measuring TKA kinematics are too cumbersome, inaccurate, or time-consuming for practical clinical application. Even state-of-the-art techniques require human-supervision to obtain clinically reliable kinematics. Eliminating human supervision could potentially make this technology practical for clinical use. METHODS: We demonstrate a fully autonomous pipeline for quantifying 3D-TKA kinematics from single-plane radiographic imaging. First, a convolutional neural network (CNN) segmented the femoral and tibial implants from the image. Second, those segmented images were compared to precomputed shape libraries for initial pose estimates. Lastly, a numerical optimization routine aligned 3D implant contours and fluoroscopic images to obtain the final implant poses. RESULTS: The autonomous technique reliably produces kinematic measurements comparable to human-supervised measures, with root-mean-squared differences of less than 0.7 mm and 4° for our test data, and 0.8 mm and 1.7° for external validation studies. CONCLUSION: A fully autonomous method to measure 3D-TKA kinematics from single-plane radiographic images produces results equivalent to a human-supervised method, and may soon make it practical to perform these measurements in a clinical setting.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Raios X , Fêmur , Aprendizado de Máquina
3.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505126

RESUMO

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF. Based on FE simulated plate mechanics, the standard four-point-bend test adequately matched the stress state and the resultant bending moment in the plate as compared with femur models with an existing PFF. In addition, the newly developed constrained three-point-bend tests were able to reproduce plate stresses in models with a healed PFF. Furthermore, a combined bending and compression cadaveric test was appropriate for risk assessment including both plate fracture and screw loosening after the complete healing of PFF. The result of this study provides the means for combined experimental and computational preclinical evaluation of PFF fixation constructs.


Assuntos
Fraturas do Fêmur , Fraturas Periprotéticas , Atividades Cotidianas , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur , Fixação Interna de Fraturas , Humanos , Testes Mecânicos , Fraturas Periprotéticas/cirurgia
4.
J Biomech Eng ; 142(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913450

RESUMO

Dynamic, in vivo evaluations of knee mechanics are important for understanding knee injury and repair, and developing successful treatments. Computational models have been used with in vivo experiments to quantify joint mechanics, but they are typically not predictive. The current study presents a novel integrated approach with high-speed stereo radiography, musculoskeletal modeling, and finite element (FE) modeling for evaluation of subject-specific, in vivo knee mechanics in a healthy subject performing a seated knee extension and weight-bearing lunge. Whole-body motion capture, ground reaction forces, and radiography-based kinematics were used to drive musculoskeletal and predictive FE models for load-controlled simulation of in vivo knee mechanics. A predictive simulation of knee mechanics was developed in four stages: (1) in vivo measurements of one subject performing a lunge and a seated knee extension, (2) rigid-body musculoskeletal modeling to determine muscle forces, (3) FE simulation of knee extension for knee-ligament calibration, and (4) predictive FE simulation of a lunge. FE models predicted knee contact and ligament mechanics and evaluated the impact of cruciate ligament properties on joint kinematics and loading. Calibrated model kinematics demonstrated good agreement to the experimental motion with root-mean-square differences of tibiofemoral flexion-extension <3 deg, internal-external <4 deg, and anterior-posterior <2 mm. Ligament reference strain and attachment locations were the most critical properties in the calibration process. The current work advances previous in vivo knee modeling through simulation of dynamic activities, modeling of subject-specific knee behavior, and development of a load-controlled knee model.


Assuntos
Análise de Elementos Finitos , Articulação do Joelho , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Suporte de Carga
5.
J Arthroplasty ; 34(5): 974-980, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30777625

RESUMO

BACKGROUND: Patellofemoral complications may cause pain and discomfort, sometimes leading to revision surgery for total knee arthroplasty patients, and patellar implant design has an impact on function of the reconstructed knee. The purpose of this in vivo biomechanics study was to understand the kinematic, functional, strength, and patient-reported outcome data of patients with anatomic and dome patellar implants. METHODS: Satisfactory age-matched, gender-matched, and body mass index-matched patients who underwent rotating-platform total knee arthroplasty from one joint replacement system with either dome (n = 16) or anatomic (n = 16) patellar components were tested in a human motion laboratory using high-speed stereoradiography during an unweighted seated knee extension and a weight-bearing lunge activity. Patellar kinematics, range of motion, strength, and patient-reported outcomes were compared between subjects with anatomic or dome component geometry. RESULTS: Both groups of patients achieved similar functional knee range of motion and reported similar outcomes and satisfaction. On average, patients with the anatomic component had 36% greater extensor strength compared with dome subjects. Patients with anatomic patellar components demonstrated significantly greater flexion of the patella relative to the femur and lower external rotation during the weighted lunge activity. CONCLUSIONS: Relative to the modified dome geometry, patients with anatomic patellar geometry achieved greater patellar flexion which may better replicate normal patellar motion. Patients with anatomic implants may regain more extensor strength compared to patients with dome implants due to geometric differences in the patellar component designs.


Assuntos
Artroplastia do Joelho/instrumentação , Prótese do Joelho , Patela/fisiopatologia , Idoso , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Patela/cirurgia , Medidas de Resultados Relatados pelo Paciente , Desenho de Prótese , Amplitude de Movimento Articular , Rotação
6.
J Biomech Eng ; 138(3): 4032379, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26720096

RESUMO

Musculoskeletal models are powerful tools that allow biomechanical investigations and predictions of muscle forces not accessible with experiments. A core challenge modelers must confront is validation. Measurements of muscle activity and joint loading are used for qualitative and indirect validation of muscle force predictions. Subject-specific models have reached high levels of complexity and can predict contact loads with surprising accuracy. However, every deterministic musculoskeletal model contains an intrinsic uncertainty due to the high number of parameters not identifiable in vivo. The objective of this work is to test the impact of intrinsic uncertainty in a scaled-generic model on estimates of muscle and joint loads. Uncertainties in marker placement, limb coronal alignment, body segment parameters, Hill-type muscle parameters, and muscle geometry were modeled with a global probabilistic approach (multiple uncertainties included in a single analysis). 5-95% confidence bounds and input/output sensitivities of predicted knee compressive loads and varus/valgus contact moments were estimated for a gait activity of three subjects with telemetric knee implants from the "Grand Challenge Competition." Compressive load predicted for the three subjects showed confidence bounds of 333 ± 248 N, 408 ± 333 N, and 379 ± 244 N when all the sources of uncertainty were included. The measured loads lay inside the predicted 5-95% confidence bounds for 77%, 83%, and 76% of the stance phase. Muscle maximum isometric force, muscle geometry, and marker placement uncertainty most impacted the joint load results. This study demonstrated that identification of these parameters is crucial when subject-specific models are developed.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Incerteza , Artroplastia do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Músculos/fisiologia , Modelagem Computacional Específica para o Paciente , Caminhada/fisiologia , Suporte de Carga
7.
J Biomech Eng ; 138(8)2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27306137

RESUMO

Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus-valgus (VV) rotations, <6 deg during internal-external (IE) rotations, and <3 mm of translation during anterior-posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community.


Assuntos
Instabilidade Articular/fisiopatologia , Articulação do Joelho/fisiopatologia , Ligamentos Articulares/fisiopatologia , Modelos Biológicos , Amplitude de Movimento Articular , Suporte de Carga , Cadáver , Cartilagem Articular/fisiopatologia , Simulação por Computador , Módulo de Elasticidade , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração
8.
Bioengineering (Basel) ; 11(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790369

RESUMO

Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve measured patient-specific joint loading and motion was completed for nine patients with telemetric implants during gait, stair descent, and deep knee bend. The study also compared two EBC scenarios: activity-specific hip AP motion and pelvic rotation (that was averaged across all patients for an activity) and patient-specific hip AP motion and pelvic rotation. Including patient-specific data significantly improved reproduction of joint-level loading, reducing root mean squared error between the target and achieved loading by 28.7% and highlighting the importance of detailed patient data in replicating joint kinematics and kinetics. The principal component analysis (PCA) of the EBCs for the patient dataset showed that one component represented 77.8% of the overall variation, while the first three components represented 97.8%. Given the significant loading variability within the patient cohort, this group of patient-specific models can be run individually to provide insight into expected TKA mechanics variability, and the PCA can be utilized to further create reasonable EBCs that expand the variability evaluated.

9.
J Biomech ; 166: 112066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574563

RESUMO

Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.


Assuntos
Articulação do Joelho , Joelho , Humanos , Fenômenos Biomecânicos , Radiografia , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos
10.
Ann Biomed Eng ; 52(6): 1591-1603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558356

RESUMO

Kinematic tracking of native anatomy from stereo-radiography provides a quantitative basis for evaluating human movement. Conventional tracking procedures require significant manual effort and call for acquisition and annotation of subject-specific volumetric medical images. The current work introduces a framework for fully automatic tracking of native knee anatomy from dynamic stereo-radiography which forgoes reliance on volumetric scans. The method consists of three computational steps. First, captured radiographs are annotated with segmentation maps and anatomic landmarks using a convolutional neural network. Next, a non-convex polynomial optimization problem formulated from annotated landmarks is solved to acquire preliminary anatomy and pose estimates. Finally, a global optimization routine is performed for concurrent refinement of anatomy and pose. An objective function is maximized which quantifies similarities between masked radiographs and digitally reconstructed radiographs produced from statistical shape and intensity models. The proposed framework was evaluated against manually tracked trials comprising dynamic activities, and additional frames capturing a static knee phantom. Experiments revealed anatomic surface errors routinely below 1.0 mm in both evaluation cohorts. Median absolute errors of individual bone pose estimates were below 1.0 ∘ or mm for 15 out of 18 degrees of freedom in both evaluation cohorts. Results indicate that accurate pose estimation of native anatomy from stereo-radiography may be performed with significantly reduced manual effort, and without reliance on volumetric scans.


Assuntos
Joelho , Humanos , Joelho/diagnóstico por imagem , Joelho/anatomia & histologia , Joelho/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Imagens de Fantasmas , Radiografia , Modelos Estatísticos
11.
Clin Biomech (Bristol, Avon) ; 120: 106350, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39317133

RESUMO

BACKGROUND: Restoring medial knee pivot kinematics post-total knee arthroplasty is widely recognized to enhance patient satisfaction. Our study investigates the kinematics of patients who received posterior stabilized implants via robotic-arm assisted surgery, specifically analyzing effects of implant alignment and soft tissue balance on pivot location. METHODS: Twelve high-functioning patients with unilateral posterior stabilizing knee implants underwent CT-guided robotic-arm assisted surgery. We then evaluated their knee kinematics using stereo radiography during gait, stair descent, lunge, seated knee extension and leg press. Femoral low-point condylar kinematics were used to calculate the transverse center of rotation, or pivot, using principal component analysis. Linear mixed effects regression was used to identify surgical parameters that influence pivot location across a flexion range. FINDINGS: Across all five activities a central pivot pattern emerged as the primary pivot location (40 %) followed by medial (25 %), no pivot (22 %) and lateral (14 %). Tibial medial resection depth and Tibial implant flexion-extension placement were significantly associated with shifting the pivot location laterally prior to cam-post engagement. Femoral implant external-internal implant placement, and medial compartment laxity in extension were significantly associated with shifting the pivot location laterally during the cam-post engagement, while femoral distal-lateral resection depth was associated with a medial shift. INTERPRETATION: Central and medial pivot locations are predominant in patients with posterior stabilized total knee arthroplasty, facilitated by robotic-arm assisted surgery. Despite significant associations between surgical parameters such as tibial medial resection depth and lateral compartment laxity with medial pivot, these variables explained a small portion of the variability in pivot location. This suggests that while surgical precision influences pivot kinematics, individual patient factors may play a more critical role, suggesting a need for further research into patient-specific biomechanics to optimize post-surgical outcomes.

12.
Int J Comput Assist Radiol Surg ; 18(12): 2125-2142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37120481

RESUMO

PURPOSE: Multiple applications in open surgical environments may benefit from adoption of markerless computer vision depending on associated speed and accuracy requirements. The current work evaluates vision models for 6-degree of freedom pose estimation of surgical instruments in RGB scenes. Potential use cases are discussed based on observed performance. METHODS: Convolutional neural nets were developed with simulated training data for 6-degree of freedom pose estimation of a representative surgical instrument in RGB scenes. Trained models were evaluated with simulated and real-world scenes. Real-world scenes were produced by using a robotic manipulator to procedurally generate a wide range of object poses. RESULTS: CNNs trained in simulation transferred to real-world evaluation scenes with a mild decrease in pose accuracy. Model performance was sensitive to input image resolution and orientation prediction format. The model with highest accuracy demonstrated mean in-plane translation error of 13 mm and mean long axis orientation error of 5[Formula: see text] in simulated evaluation scenes. Similar errors of 29 mm and 8[Formula: see text] were observed in real-world scenes. CONCLUSION: 6-DoF pose estimators can predict object pose in RGB scenes with real-time inference speed. Observed pose accuracy suggests that applications such as coarse-grained guidance, surgical skill evaluation, or instrument tracking for tray optimization may benefit from markerless pose estimation.


Assuntos
Robótica , Treinamento por Simulação , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Instrumentos Cirúrgicos , Simulação por Computador
13.
J Orthop Res ; 41(1): 115-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35437819

RESUMO

Micromotion magnitudes exceeding 150 µm may prevent bone formation and limit fixation after cementless total knee arthroplasty (TKA). Many factors influence the tray-bone interface micromotion but the critical parameters and sensitivities are less clear. In this study, we assessed the impacts of surgical (tray alignment, tibial coverage, and resection surface preparation), patient (bone properties and tibiofemoral kinematics), and implant design (tray feature and surface friction) factors on tray-bone interface micromotions during a series of activities of daily living. Micromotion was estimated via three previously validated implant-bone finite element models and tested under gait, deep knee bending, and stair descent loads. Overall, the average micromotion across the tray-bone cementless contact interface ranged from 9.3 to 111.4 µm, and peak micromotion was consistently found along the anterior tray edge. Maximizing tibial coverage above a properly sized tibial tray (an average of 12.3% additional area) had minimal impact on micromotion. A 1 mm anterior tray alignment change reduced the average micromotion by an average of 16.1%. Two-degree tibial angular resection errors reduced the area for bone ingrowth up to 48.1%. Differences on average micromotion from ±25% changes in bone moduli were up to 75.5%. A more posterior tibiofemoral contact due to additional 100 N posterior force resulted in an average of 79.3% increase on average micromotion. Overall, careful surgical technique, patient selection, and controlling kinematics through articular design all contribute meaningfully to minimizing micromotion in cementless TKA, with centralizing the load transfer to minimize the resulting moment at the anterior tray perimeter a consistent theme.


Assuntos
Artroplastia do Joelho , Humanos , Atividades Cotidianas
14.
J Orthop Res ; 41(8): 1687-1696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36691865

RESUMO

Medial patellofemoral ligament reconstruction (MPFLR) has emerged as the procedure of choice for recurrent patellar dislocation. This addresses soft tissue injury but does not address underlying anatomic factors, including trochlear dysplasia, that are commonly present and increase risk of dislocation. Quantification of the stability offered by other surgical interventions, namely, medializing tibial tubercle osteotomy (mTTO) and trochleoplasty, with and without MPFLR, may provide insight for surgical choices in patients with trochlear dysplasia. We developed subject-specific finite element models based on magnetic resonance scans from a cohort of 20 patients with trochlear dysplasia and recurrent patellar dislocation. The objectives of this study were (1) to compare patella stability after mTTO and trochleoplasty procedures; (2) to evaluate whether it is necessary to perform an MPFLR in combination with the mTTO or trocheoplasty procedure; and (3) to quantify the robustness of patellar stability to variability in knee kinematics. Trochleoplasty performed better than mTTO at stabilizing the patella between 5° and 30° flexion. For both mTTO and trochleoplasty procedures, it was beneficial to also perform MPFLR-inclusion of MPFLR halved the magnitude of patellar laxity predicted in the simulations. Simulations that did not include any medial patellofemoral ligament restraint were also more sensitive to variation in tibiofemoral internal-external kinematics.


Assuntos
Luxações Articulares , Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Humanos , Luxação Patelar/diagnóstico por imagem , Luxação Patelar/cirurgia , Fêmur/cirurgia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologia , Tíbia/cirurgia , Ligamentos Articulares/cirurgia , Osteotomia/métodos , Instabilidade Articular/patologia , Articulação Patelofemoral/cirurgia
15.
Comput Biol Med ; 163: 107189, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393783

RESUMO

The current work introduces a system for fully automatic tracking of native glenohumeral kinematics in stereo-radiography sequences. The proposed method first applies convolutional neural networks to obtain segmentation and semantic key point predictions in biplanar radiograph frames. Preliminary bone pose estimates are computed by solving a non-convex optimization problem with semidefinite relaxations to register digitized bone landmarks to semantic key points. Initial poses are then refined by registering computed tomography-based digitally reconstructed radiographs to captured scenes, which are masked by segmentation maps to isolate the shoulder joint. A particular neural net architecture which exploits subject-specific geometry is also introduced to improve segmentation predictions and increase robustness of subsequent pose estimates. The method is evaluated by comparing predicted glenohumeral kinematics to manually tracked values from 17 trials capturing 4 dynamic activities. Median orientation differences between predicted and ground truth poses were 1.7∘ and 8.6∘ for the scapula and humerus, respectively. Joint-level kinematics differences were less than 2∘ in 65%, 13%, and 63% of frames for XYZ orientation DoFs based on Euler angle decompositions. Automation of kinematic tracking can increase scalability of tracking workflows in research, clinical, or surgical applications.


Assuntos
Imageamento Tridimensional , Articulação do Ombro , Fenômenos Biomecânicos , Imageamento Tridimensional/métodos , Radiografia , Articulação do Ombro/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
16.
Front Bioeng Biotechnol ; 11: 1153692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274172

RESUMO

Skeletal muscles have a highly organized hierarchical structure, whose main function is to generate forces for movement and stability. To understand the complex heterogeneous behaviors of muscles, computational modeling has advanced as a non-invasive approach to evaluate relevant mechanical quantities. Aiming to improve musculoskeletal predictions, this paper presents a framework for modeling 3D deformable muscles that includes continuum constitutive representation, parametric determination, model validation, fiber distribution estimation, and integration of multiple muscles into a system level for joint motion simulation. The passive and active muscle properties were modeled based on the strain energy approach with Hill-type hyperelastic constitutive laws. A parametric study was conducted to validate the model using experimental datasets of passive and active rabbit leg muscles. The active muscle model with calibrated material parameters was then implemented to simulate knee bending during a squat with multiple quadriceps muscles. A computational fluid dynamics (CFD) fiber simulation approach was utilized to estimate the fiber arrangements for each muscle, and a cohesive contact approach was applied to simulate the interactions among muscles. The single muscle simulation results showed that both passive and active muscle elongation responses matched the range of the testing data. The dynamic simulation of knee flexion and extension showed the predictive capability of the model for estimating the active quadriceps responses, which indicates that the presented modeling pipeline is effective and stable for simulating multiple muscle configurations. This work provided an effective framework of a 3D continuum muscle model for complex muscle behavior simulation, which will facilitate additional computational and experimental studies of skeletal muscle mechanics. This study will offer valuable insight into the future development of multiscale neuromuscular models and applications of these models to a wide variety of relevant areas such as biomechanics and clinical research.

17.
J Biomech ; 149: 111487, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868041

RESUMO

Representative data of asymptomatic, native-knee kinematics is important when studying changes in knee function across the lifespan. High-speed stereo radiography (HSSR) provides a reliable measure of knee kinematics to <1 mm of translation and 1° of rotation, but studies often have limited statistical power to make comparisons between groups or measure the contribution of individual variability. The purpose of this study is to examine in vivo condylar kinematics to quantify the transverse center-of-rotation, or pivot, location across the flexion range and challenge the medial-pivot paradigm in asymptomatic knee kinematics. We quantified the pivot location during supine leg press, knee extension, standing lunge, and gait for 53 middle-aged and older adults (27 men; 26 women: 50.8 ± 7.0 yrs, 1.75 ± 0.1 m, 79.1 ± 15.4 kg). A central- to medial-pivot location was identified for all activities with increased knee flexion associated with posterior translation of the center-of-rotation. The association between knee angle and anterior-posterior center-of-rotation location was not as strong as the relation between medial-lateral and anterior-posterior location, excluding gait. The Pearson's correlation for gait was stronger between knee angle and anterior-posterior center-of-rotation location (P < 0.001) than medial-lateral and anterior-posterior location (P = 0.0122). Individual variability accounted for a measurable proportion in variance explained of center-of-rotation location. Unique to gait, the lateral translation of center-of-rotation location resulted in the anterior translation of center-of-rotation at <10° knee flexion. Furthermore, no association between vertical ground-reaction force and center-of-rotation was identified.


Assuntos
Marcha , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Idoso , Articulação do Joelho/diagnóstico por imagem , Rotação , Grupo Social , Posição Ortostática
18.
J Mech Behav Biomed Mater ; 136: 105507, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209592

RESUMO

The initial fixation of cementless tibial trays after total knee arthroplasty is critical to ensure bony ingrowth and long-term fixation. Various fixed-bearing implant designs that utilize different fixation features, surface coatings, and bony preparations to facilitate this initial stability are currently used clinically. However, the role of tibiofemoral conformity and the effect of different tray fixation features on initial stability are still unclear. This study assessed the implant stability of two TKA designs during a series of simulated daily activities including experimental testing and corresponding computational models. Tray-bone interface micromotions and the porous area ideal for bone ingrowth were investigated computationally and compared between the two designs. The isolated effect of femoral-insert conformity and fixation features on the micromotion was examined separately by virtually exchanging design features. The peak interface micromotions predicted were at least 47% different for the two designs, which was a combined result of different femoral-insert conformity (contributed 79% of the micromotion difference) and fixation features (21%). A more posterior femoral-insert contact due to lower tibiofemoral conformity in a force-controlled simulation significantly increased the micromotion and reduced the surface area ideal for bone ingrowth. The maximum difference in peak micromotions caused by only changing the fixation features was up to 33%. Overall, the moment arm from the insert articular contact point to the anterolateral tray perimeter was the primary factor correlated to peak and average micromotion. Our results indicated that tray-bone micromotion could be minimized by centralizing the load transfer and optimizing the fixation features.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fêmur/cirurgia , Tíbia/cirurgia , Próteses e Implantes , Osso e Ossos/cirurgia , Desenho de Prótese
19.
J Orthop Res ; 40(3): 604-613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33928682

RESUMO

Dislocation remains the leading indication for revision of total hip arthroplasty (THA). The objective of this study was to use a computational model to compare the overall resistance to both anterior and posterior dislocation for the available THA constructs commonly considered by surgeons attempting to produce a stable joint. Patient-specific musculoskeletal models of THA patients performing activities consistent with anterior and posterior dislocation were developed to calculate joint contact forces and joint positions used for simulations of dislocation in a finite element model of the implanted hip that included an experimentally calibrated hip capsule representation. Dislocations were then performed with consideration of offset using +5 and +9 offset, iteratively with three lipped liner variations in jump distance (10°, 15°, and 20° lips), a size 40 head, and a dual-mobility construct. Dislocation resistance was quantified as the moment required to dislocate the hip and the integral of the moment-flexion angle (dislocation energy). Increasing head diameter increased resistive moment on average for anterior and posterior dislocation by 22% relative to a neutral configuration. A lipped liner resulted in increases in the resistive moment to posterior dislocation of 9%, 19%, and 47% for 10°, 15°, and 20° lips, a sensitivity of approximately 2.8 Nm/mm of additional jump distance. A dual-mobility acetabular design resulted in an average 38% increase in resistive moment and 92% increase in dislocation energy for anterior and posterior dislocation. A quantitative understanding of tradeoffs in the dislocation risk inherent to THA construct options is valuable in supporting surgical decision making.


Assuntos
Artroplastia de Quadril , Luxação do Quadril , Prótese de Quadril , Luxações Articulares , Acetábulo/cirurgia , Artroplastia de Quadril/métodos , Articulação do Quadril/cirurgia , Humanos , Desenho de Prótese , Falha de Prótese , Amplitude de Movimento Articular , Reoperação
20.
J Biomech ; 138: 111118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576630

RESUMO

The standing lunge is an activity commonly used to quantify in-vivo knee kinematics with fluoroscopy. The ability to perform the standing lunge varies between subjects and can necessitate movement accommodations to successfully complete the desired range of motion. We proposed a supine leg press as an alternative to the standing lunge that aimed to provide a similar evaluation of knee motion while increasing the measured range of motion. Tibiofemoral kinematics of 53 non-symptomatic adults (27 men, 26 women, 50.8 ± 7.0 yrs.) were calculated from the tracked high-speed stereo radiography (HSSR) images for supine leg press and standing lunge using CT-segmented bony geometries of the right lower limb. The supine leg press proved to be a useful alternative to the standing lunge while providing 46.2° greater range of motion in knee flexion. The difference in angle-matched kinematics across a 100° flexion range between the leg press and lunge was 0.70° in varus-valgus rotation, 1.5° in internal-external rotation, 1.0 mm in medial-lateral translation, 2.3 mm in anterior-posterior translation, and 0.46 mm in superior-inferior translation for men. The angle-matched difference for women across 100° was 0.58° in varus-valgus rotation, 2.4° internal-external rotation, 0.70 mm medial-lateral translation, 2.1 mm anterior-posterior translation, and 0.78 mm superior-inferior translation. The similar kinematics, while having a greater range of motion, and control of the applied load makes the supine leg press an alternative for quantifying in-vivo knee kinematics.


Assuntos
Articulação do Joelho , Perna (Membro) , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho/diagnóstico por imagem , Masculino , Radiografia , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA