Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 585, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993808

RESUMO

BACKGROUND: H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS: H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS: Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Endosperma/genética , Endosperma/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Regulação da Expressão Gênica de Plantas
2.
Proc Natl Acad Sci U S A ; 112(32): 10044-9, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26150490

RESUMO

A fundamental mystery of plant cell biology is the occurrence of "stromules," stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways.


Assuntos
Cloroplastos/metabolismo , Nicotiana/metabolismo , Transdução de Sinais , Sequência de Bases , Benzoquinonas/farmacologia , Cloroplastos/ultraestrutura , Ritmo Circadiano/efeitos dos fármacos , Diurona/farmacologia , Inativação Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Filogenia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sacarose/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Imagem com Lapso de Tempo , Nicotiana/efeitos dos fármacos
3.
Res Sq ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333181

RESUMO

Background: H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. Results: H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Conclusions: Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.

4.
J Vis Exp ; (117)2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27911400

RESUMO

Stromules, or "stroma-filled tubules", are narrow, tubular extensions from the surface of the chloroplast that are universally observed in plant cells but whose functions remain mysterious. Alongside growing attention on the role of chloroplasts in coordinating plant responses to stress, interest in stromules and their relationship to chloroplast signaling dynamics has increased in recent years, aided by advances in fluorescence microscopy and protein fluorophores that allow for rapid, accurate visualization of stromule dynamics. Here, we provide detailed protocols to assay stromule frequency in the epidermal chloroplasts of Nicotiana benthamiana, an excellent model system for investigating chloroplast stromule biology. We also provide methods for visualizing chloroplast stromules in vitro by extracting chloroplasts from leaves. Finally, we outline sampling strategies and statistical approaches to analyze differences in stromule frequencies in response to stimuli, such as environmental stress, chemical treatments, or gene silencing. Researchers can use these protocols as a starting point to develop new methods for innovative experiments to explore how and why chloroplasts make stromules.


Assuntos
Microscopia de Fluorescência , Plastídeos , Cloroplastos , Folhas de Planta , Nicotiana
5.
Science ; 347(6222): 621, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25657240

RESUMO

Sayou et al. (Reports, 7 February 2014, p. 645) proposed a new model for evolution of transcription factors without gene duplication, using LEAFY as an archetype. Their proposal contradicts the evolutionary history of plants and ignores evidence that LEAFY evolves through gene duplications. Within their data set, we identified a moss with multiple LEAFY orthologs, which contests their model and supports that LEAFY evolves through duplications.


Assuntos
DNA de Plantas/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Evolução Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética
6.
Curr Opin Cell Biol ; 35: 13-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25847870

RESUMO

Plant cells are connected across cell walls by nanoscopic channels called plasmodesmata (PD), which allow plant cells to share resources and exchange signaling molecules. Several protein components of PD membranes have been identified, and recent advances in superresolution live-cell microscopy are illuminating PD ultrastructure. Restricting transport through PD is crucial for morphogenesis, since hormones and hundreds of transcription factors regularly move through PD, and this transport must stop to allow cells to begin differentiating. Chloroplasts and mitochondria regulate PD function through signal transduction networks that coordinate plant physiology and development. Recent discoveries on the relationships of land plants and their algal relatives suggest that PD have evolved independently in several lineages, emphasizing the importance of cytosolic bridges in multicellular biology.


Assuntos
Citosol/metabolismo , Plasmodesmos/metabolismo , Transporte Biológico , Comunicação Celular , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia
7.
Methods Mol Biol ; 1217: 185-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25287205

RESUMO

Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Nicotiana/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Plasmodesmos/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Comunicação Celular , Engenharia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/virologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plasmodesmos/genética , Plasmodesmos/microbiologia , Plasmodesmos/virologia , Transporte Proteico , Transdução de Sinais , Nicotiana/metabolismo , Nicotiana/microbiologia , Nicotiana/virologia
8.
Curr Opin Plant Biol ; 16(5): 614-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23978390

RESUMO

Membrane-lined channels called plasmodesmata (PD) connect the cytoplasts of adjacent plant cells across the cell wall, permitting intercellular movement of small molecules, proteins, and RNA. Recent genetic screens for mutants with altered PD transport identified genes suggesting that chloroplasts play crucial roles in coordinating PD transport. Complementing this discovery, studies manipulating expression of PD-localized proteins imply that changes in PD transport strongly impact chloroplast biology. Ongoing efforts to find genes that control root and stomatal development reveal the critical role of PD in enforcing tissue patterning, and newly discovered PD-localized proteins show that PD influence development, intracellular signaling, and defense against pathogens. Together, these studies demonstrate that PD function and formation are tightly integrated with plant physiology.


Assuntos
Cloroplastos/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/genética , Plasmodesmos/metabolismo , Transdução de Sinais , Transporte Biológico , Comunicação Celular , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA