Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Int Med Res ; 51(8): 3000605231189651, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37565647

RESUMO

OBJECTIVES: The success of the ex vivo machine perfusion of pig livers used for preclinical research depends on organ quality and availability. In this study, we investigated whether livers obtained from slaughterhouses are suitable and equivalent to livers obtained from laboratory pigs. METHODS: Livers were obtained from slaughterhouse pigs stunned by electrocution or CO2 inhalation and from laboratory pigs. For the latter group, 45 minutes of warm ischemia was mimicked for a subgroup, ensuring a valid comparison with slaughterhouse-derived livers. RESULTS: Livers from CO2-stunned pigs showed lower indocyanine green clearance and bile production, higher blood lactate and potassium concentrations, and higher alanine aminotransferase activities than electrically stunned pigs. Furthermore, livers from electrically stunned pigs, and livers from laboratory pigs, subjected or not to warm ischemia, showed similar performance in terms of perfusion and metabolism. CONCLUSION: For an ex vivo liver model generated using slaughterhouse pigs, electrical stunning is preferable to CO2 stunning. Livers from electrically stunned slaughterhouse pigs performed similarly to laboratory pig livers. These findings support the use of livers from electrically stunned slaughterhouse pigs, which may therefore provide an alternative to livers obtained from laboratory pigs, consistent with the principle of the 3Rs.


Assuntos
Matadouros , Dióxido de Carbono , Suínos , Animais , Dióxido de Carbono/metabolismo , Fígado/metabolismo , Circulação Extracorpórea , Perfusão
2.
Bioengineering (Basel) ; 9(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36135018

RESUMO

Metabolic and toxic liver disorders, such as fatty liver disease (steatosis) and drug-induced liver injury, are highly prevalent and potentially life-threatening. To allow for the study of these disorders from the early stages onward, without using experimental animals, we collected porcine livers in a slaughterhouse and perfused these livers normothermically. With our simplified protocol, the perfused slaughterhouse livers remained viable and functional over five hours of perfusion, as shown by hemodynamics, bile production, indocyanine green clearance, ammonia metabolism, gene expression and histology. As a proof-of-concept to study liver disorders, we show that an infusion of free fatty acids and acetaminophen results in early biochemical signs of liver damage, including reduced functionality. In conclusion, the present platform offers an accessible system to perform research in a functional, relevant large animal model while avoiding using experimental animals. With further improvements to the model, prolonged exposure could make this model a versatile tool for studying liver diseases and potential treatments.

3.
Genes (Basel) ; 9(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565814

RESUMO

Many tissue models have been developed to mimic liver-specific functions for metabolic and toxin conversion in in vitro assays. Most models represent a 2D environment rather than a complex 3D structure similar to native tissue. To overcome this issue, spheroid cultures have become the gold standard in tissue engineering. Unfortunately, spheroids are limited in size due to diffusion barriers in their dense structures, limiting nutrient and oxygen supply. Recent developments in bioprinting techniques have enabled us to engineer complex 3D structures with perfusion-enabled channel systems to ensure nutritional supply within larger, densely-populated tissue models. In this study, we present a proof-of-concept for the feasibility of bioprinting a liver organoid by combining HepaRG and human stellate cells in a stereolithographic printing approach, and show basic characterization under static cultivation conditions. Using standard tissue engineering analytics, such as immunohistology and qPCR, we found higher albumin and cytochrome P450 3A4 (CYP3A4) expression in bioprinted liver tissues compared to monolayer controls over a two-week cultivation period. In addition, the expression of tight junctions, liver-specific bile transporter multidrug resistance-associated protein 2 (MRP2), and overall metabolism (glucose, lactate, lactate dehydrogenase (LDH)) were found to be stable. Furthermore, we provide evidence for the perfusability of the organoids' intrinsic channel system. These results motivate new approaches and further development in liver tissue engineering for advanced organ-on-a-chip applications and pharmaceutical developments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA