RESUMO
Co-doped Au25 nanoclusters with different numbers of doping atoms were synthesized and supported on CeO2. The catalytic properties were studied in the CO oxidation reaction. In all cases, an enhancement in catalytic activity was observed compared to the pure Au25 nanocluster catalyst. Interestingly, a different catalytic performance was obtained depending on the number of Co atoms within the cluster. This was related to the mobility of atoms within the cluster's structure under pretreatment and reaction conditions, resulting in active CoAu nanoalloy sites. The evolution of the doped Au clusters into nanoalloys with well-distributed Co atoms within the Au cluster structure was revealed by combined XAFS, DRIFTS, and XPS studies. Overall, these studies contribute to a better understanding of the dynamics of doped nanoclusters on supports upon pretreatment and reaction, which is key information for the future development and application of bimetallic nanocluster (nanoalloy) catalysts.
RESUMO
The surface structure of oxide-supported metal nanoparticles can be determined via characteristic vibrations of adsorbed probe molecules such as CO. Usually, spectroscopic studies focus on peak position and intensity, which are related to binding geometries and number of adsorption sites, respectively. Employing two differently prepared model catalysts, it is demonstrated that polarization-dependent sum-frequency-generation (SFG) spectroscopy reveals the average surface structure and shape of the nanoparticles. SFG results for different particle sizes and morphologies are compared to direct real-space structure analysis by TEM and STM. The described feature of SFG could be used to monitor particle restructuring in situ and may be a valuable tool for operando catalysis.
RESUMO
Operando characterization of working catalysts, requiring per definitionem the simultaneous measurement of catalytic performance, is crucial to identify the relevant catalyst structure, composition and adsorbed species. Frequently applied operando techniques are discussed, including X-ray absorption spectroscopy, near ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy. In contrast to these area-averaging spectroscopies, operando surface microscopy by photoemission electron microscopy delivers spatially-resolved data, directly visualizing catalyst heterogeneity. For thorough interpretation, the experimental results should be complemented by density functional theory. The operando approach enables to identify changes of cluster/nanoparticle structure and composition during ongoing catalytic reactions and reveal how molecules interact with surfaces and interfaces. The case studies cover the length-scales from clusters via nanoparticles to meso-scale aggregates, and demonstrate the benefits of specific operando methods. Restructuring, ligand/atom mobility, and surface composition alterations during the reaction may have pronounced effects on activity and selectivity. The nanoscale metal/oxide interface steers catalytic performance via a long ranging effect. Combining operando spectroscopy with switching gas feeds or concentration-modulation provides further mechanistic insights. The obtained fundamental understanding is a prerequisite for improving catalytic performance and for rational design.
RESUMO
In an effort to combine the favorable catalytic properties of Co3 O4 and CeO2 , nanocomposites with different phase distribution and Co3 O4 loading were prepared and employed for CO oxidation. Synthesizing Co3 O4 -modified CeO2 via three different sol-gel based routes, each with 10.4â wt % Co3 O4 loading, yielded three different nanocomposite morphologies: CeO2 -supported Co3 O4 layers, intermixed oxides, and homogeneously dispersed Co. The reactivity of the resulting surface oxygen species towards CO were examined by temperature programmed reduction (CO-TPR) and flow reactor kinetic tests. The first morphology exhibited the best performance due to its active Co3 O4 surface layer, reducing the light-off temperature of CeO2 by about 200 °C. In contrast, intermixed oxides and Co-doped CeO2 suffered from lower dispersion and organic residues, respectively. The performance of Co3 O4 -CeO2 nanocomposites was optimized by varying the Co3 O4 loading, characterized by X-ray diffraction (XRD) and N2 sorption (BET). The 16-65â wt % Co3 O4 -CeO2 catalysts approached the conversion of 1â wt % Pt/CeO2 , rendering them interesting candidates for low-temperature CO oxidation.
RESUMO
Replacement of protecting ligands of gold nanoclusters by ligand exchange has become an established post-synthetic tool for selectively modifying the nanoclusters' properties. Several Au nanoclusters are known to additionally undergo size transformations upon ligand exchange, enabling access to cluster structures that are difficult to obtain by direct synthesis. This work reports on the selective size transformation of Au15(SG)13 (SG: glutathione) nanoclusters to Au16(2-PET)14 (2-PET: 2-phenylethanethiol) nanoclusters through a two-phase ligand exchange process at room temperature. Among several parameters evaluated, the addition of a large excess of exchange thiol (2-PET) to the organic phase was identified as the key factor for the structure conversion. After exchange, the nature of the clusters was determined by UV-vis, electrospray ionization-time of flight mass spectrometry, attenuated total reflection-Fourier transform infrared, and extended x-ray absorption fine-structure spectroscopy. The obtained Au16(2-PET)14 clusters proved to be exceptionally stable in solution, showing only slightly diminished UV-vis absorption features after 3 days, even when exposed to an excess of thiol ligands.
RESUMO
A Cu-Zn/core-shell Al-MCM-41 catalyst with various Cu and Zn species was investigated for selective catalytic reduction of NO with NH3. The roles of Zn in the NOx adsorption properties and the acidity of the catalysts were studied by temperature-programmed desorption of NOx and in situ Fourier transform infrared spectroscopy of NO+O2 adsorption and NH3 adsorption. The presence of Zn can promote the number of acid sites and improve the NOx adsorption capacity by providing the additional sites for NOx adsorption and subsequent nitrite and nitrate formation. Based on the experimental results, a possible reaction pathway was suggested. Cu-Zn/Al-MCM-41 exhibited higher activity compared with that of Cu/Al-MCM-41, having an average NO conversion of 73%. However, the average NO conversion was increased to 77% when Zn was loaded as ZnO form instead of various Zn species. in situ X-ray adsorption near edge structure during reduction by H2 revealed that there is a higher number of Cu+ in Cu-ZnO/Al-MCM-41 than that in Cu-Zn/Al-MCM-41. Under wet condition, the average NO conversion of Cu-ZnO/core-shell Al-MCM-41 was dropped to 68%. However, activity of Cu-ZnO/core-shell Al-MCM-41 was more stable than that of Cu-Zn/core-shell Al-MCM-41.
RESUMO
The catalytic hydrogenation of different aldehydes to the corresponding alcohols was investigated using an FeII hydride pincer complex as catalyst in the supported ionic liquid phase (SILP) reaction mode. Two different ionic liquids of the type [X4441][NTf2] with X=N or P were applied with mesoporous silica gel as support, which was coated first with a chemisorbed monolayer of the corresponding modified IL to remove acidic surface OH-groups and to prevent IL leaching. Quantitative conversion with turn-over frequencies in the order of 1000 h- 1 were obtained for various aromatic and heteroaromatic aldehydes and highly selective aldehyde reduction was observed also for substrates containing reducible C=C bonds. Aldehydes with longer aliphatic chains or cycloalkyl substituents, however, showed no conversion here, in contrast to a previous study with an imidazolium-based ionic liquid. These differences were ascribed primarily to differences in substrate/ionic liquid interactions. Whereas [N4441][NTf2] and [P4441][NTf2] gave essentially identical results for different substrates in single-batch reactions, prolonged use of the catalyst in repeated reaction cycles lead to a quick drop-off in catalyst activity in [P4441][NTf2], but a continuous, quantitative conversion in [N4441][NTf2].
RESUMO
The fast metal exchange reaction between Au38 and AgxAu38-x nanoclusters in solution at -20 °C has been studied by in situ X-ray absorption spectroscopy (time resolved quick XAFS) in transmission mode. A cell was designed for this purpose consisting of a cooling system, remote injection and mixing devices. The capability of the set-up is demonstrated for second and minute time scale measurements of the metal exchange reaction upon mixing Au38/toluene and AgxAu38-x/toluene solutions at both Ag K-edge and Au L3-edge. It has been proposed that the exchange of gold and silver atoms between the clusters occurs via the SR(-M-SR)n (n = 1, 2; M = Au, Ag) staple units in the surface of the reacting clusters during their collision. However, at no point during the reaction (before, during, after) evidence is found for cationic silver atoms within the staples. This means that either the exchange occurs directly between the cores of the involved clusters or the residence time of the silver atoms in the staples is very short in a mechanism involving the metal exchange within the staples.
RESUMO
Copper species in the structure of Cu/core-shell Al-MCM-41 catalysts prepared by different techniques of Cu loading-substitution (S), ion-exchange (E), and impregnation (I) methods-were tested for NO reduction via a selective catalytic reaction with methane. Cerium was added to enhance the performance of copper. It was found that the 1.5%Ce-SEI-Cu/Al-MCM-41, in which Cu was loaded by all three techniques gave the highest NO conversion of 85% at 500 °C. Based on the results from FT-IR in-situ experiment, the mechanism of SCR-CH4 reaction is proposed. The ion-exchange method gives the best performance of SCR-CH4 reaction when compared with the other methods, because the Cu of reduced catalyst in this method exists in isolated Cu(I), which is an active site of the SCR-CH4 reaction. With H2O in the feed, the NO conversion of 1.5%-Ce-SEI-Cu/Al-MCM-41 catalyst is found to be rather stable.
RESUMO
In the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the µm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported µm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics.
RESUMO
It is well accepted that catalytically active surfaces frequently adapt to the reaction environment (gas composition, temperature) and that relevant "active phases" may only be created and observed during the ongoing reaction. Clearly, this requires the application of in situ spectroscopy to monitor catalysts at work. While changes in structure and composition may already occur for monometallic single crystal surfaces, such changes are typically more severe for oxide supported nanoparticles, in particular when they are composed of two metals. The metals may form ordered intermetallic compounds (e.g. PdZn on ZnO, Pd2Ga on Ga2O3) or disordered substitutional alloys (e.g. PdCu, PtCu on hydrotalcite). We discuss the formation and stability of bimetallic nanoparticles, focusing on the effect of atomic and electronic structure on catalytic selectivity for methanol steam reforming (MSR) and hydrodechlorination of trichloroethylene. Emphasis is placed on the in situ characterization of functioning catalysts, mainly by (polarization modulated) infrared spectroscopy, ambient pressure X-ray photoelectron spectroscopy, X-ray absorption near edge structure, and X-ray diffraction. In the present contribution, we pursue a two-fold, fundamental and applied, approach investigating technologically applied catalysts as well as model catalysts, which provides comprehensive and complementary information of the relevant surface processes at the atomic or molecular level. Comparison to results of theoretical simulations yields further insight. Several key aspects were identified that control the nanoparticle functionality: (i) alloying (IMC formation) leads to site isolation of specific (e.g. Pd) atoms but also yields very specific electronic structure due to the (e.g. Zn or Ga or Cu) neighboring atoms; (i) for intermetallic PdZn, the thickness of the surface alloy, and its resulting valence band structure and corrugation, turned out to be critical for MSR selectivity; (ii) the limited stability of phases, such as Pd2Ga under MSR conditions, also limits selectivity; (iii) favorably bimetallic catalysts act bifunctional, such as activating methanol AND water or decomposing trichlorothylene AND activating hydrogen; (iv) bifunctionality is achieved either by the two metals or by one metal and the metal-oxide interface; (v) intimate contact between the two interacting sites is required (that cannot be realized by two monometallic nanoparticles being just located close by). The current studies illustrate how rather simple bimetallic nanoparticles may exhibit intriguing diversity and flexibility, exceeding by far the properties of the individual metals. It is also demonstrated how complex reactions can be elucidated with the help of in situ spectroscopy, in particular when complementary methods with varying surface sensitivity are applied.
RESUMO
Co3 O4 -modified CeO2 (Co/Ce 1:4) was prepared by a combination of sol-gel processing and solvothermal treatment. The distribution of Co was controlled by means of the synthesis protocol to yield three different morphologies, namely, Co3 O4 nanoparticles located on the surface of CeO2 particles, coexistent Co3 O4 and CeO2 nanoparticles, or Co oxide structures homogeneously distributed within CeO2 . The effect of the different morphologies on the properties of Co3 O4 -CeO2 was investigated with regard to the crystallite phase(s), particle size, surface area, and catalytic activity for CO oxidation. The material with Co3 O4 nanoparticles finely dispersed on the surface of CeO2 particles had the highest catalytic activity.
RESUMO
In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity.
Assuntos
Compostos de Cálcio/química , Técnicas Eletroquímicas , Ferro/química , Óxidos/química , Titânio/química , Água/química , Eletrodos , Cinética , Lantânio/química , Espectroscopia Fotoeletrônica , Estrôncio/química , Propriedades de SuperfícieRESUMO
Surface science defies the complexity of ammonia synthesis.
RESUMO
Femtosecond laser ablation of Cu0.70Zn0.30 targets in ethanol led to the formation of periodic surface nanostructures and crystalline CuZn alloy nanoparticles with defects, low-coordinated surface sites, and, controlled by the applied laser fluence, different sizes and elemental composition. The Cu/Zn ratio of the nanoparticles was determined by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction. The CuZn nanoparticles were about 2-3 nm in size, and Cu-rich, varying between 70 and 95%. Increasing the laser fluence from 1.6 to 3.2 J cm-2 yielded larger particles, more stacking fault defects, and repeated nanotwinning, as evident from high-resolution transmission electron microscopy, aided by (inverse) fast Fourier transform analysis. This is due to the higher plasma temperature, leading to increased random collisions/diffusion of primary nanoparticles and their incomplete ordering due to immediate solidification typical of ultrashort pulses. The femtosecond laser-synthesized often nanotwinned CuZn nanoparticles were supported on highly oriented pyrolytic graphite and applied for ethylene hydrogenation, demonstrating their promising potential as model catalysts. Nanoparticles produced at 3.2 J cm-2 exhibited lower catalytic activity than those made at 2.7 J cm-2. Presumably, agglomeration/aggregation of especially 2-3 nm sized nanoparticles, as observed by postreaction analysis, resulted in a decrease in the surface area to volume ratio and thus in the number of low-coordinated active sites.
RESUMO
Ethylene, a plant hormone, is a gas that plays a crucial role in fruit ripening and senescence. In this work, a novel ethylene scavenger was prepared from amorphous silica-alumina derived from sugar cane bagasse ash (SC-ASA) and used to prolong the shelf life of mango fruits during storage. KMnO4 at 2, 4, or 6 wt %/w was loaded on SC-ASA using an impregnation method. The results showed that 4% w/w KMnO4 loaded on SC-ASA (4KM/SC-ASA) was superior for ethylene removal at an initial ethylene concentration of 400 µL L-1 for 120 min under ambient conditions (25-27 °C and 70-75% relative humidity), resulting in 100% ethylene removal. The kinetic study of ethylene removal showed that the adsorption data were best fitted with a pseudo-first-order kinetic model. The effects of 4KM/SC-ASA as sachets on the quality changes of the mango fruits were investigated, with the results showing that mango fruits packed in cardboard boxes with 4KM/SC-ASA had significantly delayed ripening, low levels of ethylene production, respiration, and weight loss, high fruit firmness, low total soluble solids, and high acidity compared to those of the control treatment. These findings should contribute to developing an ethylene scavenger to extend the shelf life of fruits, reduce the waste of the sugar and ethanol industries, and make it a valuable material.