RESUMO
In this work, the influence of two different types of cations on the gel formation and structure of mixed gel networks comprised of semiconductor (namely CdSe/CdS nanorods NR) and Au nanoparticles (NP) as well as on the respective monocomponent gels is investigated. Heteroassemblies built from colloidal building blocks are usually prepared by ligand removal or cross-linking, thus, both the surface chemistry and the destabilising agent play an essential role in the gelation process. Due to the diversity of the composition, morphology, and optical properties of the nanoparticles, a versatile route to fabricate functional heteroassemblies is of great demand. In the present work, the optics, morphology, and gelation mechanism of pure semiconductor and noble metal as well as their mixed nanoparticle gel networks are revealed. The influence of the gelation agents (bivalent and trivalent cations) on the structure-property correlation is elucidated by photoluminescence, X-ray photoelectron spectroscopy, and electron microscopy measurements. The selection of cations drastically influences the nano- and microstructure of the prepared gel network structures driven by the affinity of the cations to the ligands and the nanoparticle surface. This gelation technique provides a new platform to control the formation of porous assemblies based on semiconductor and metal nanoparticles.
RESUMO
Employing nanocrystals (NCs) as building blocks of porous aerogel network structures allows the conversion of NC materials into macroscopic solid structures while conserving their unique nanoscopic properties. Understanding the interplay of the network formation and its influence on these properties like size-dependent emission is a key to apply techniques for the fabrication of novel nanocrystal aerogels. In this work, CdSe/CdS dot/rod NCs possessing two different CdSe core sizes were synthesized and converted into porous aerogel network structures. Temperature-dependent steady-state and time-resolved photoluminescence measurements were performed to expand the understanding of the optical and electronic properties of these network structures generated from these two different building blocks and correlate their optical with the structural properties. These investigations reveal the influence of network formation and aerogel production on the network-forming nanocrystals. Based on the two investigated NC building blocks and their aerogel networks, mixed network structures with various ratios of the two building blocks were produced and likewise optically characterized. Since the different building blocks show diverse optical response, this technique presents a straightforward way to color-tune the resulting networks simply by choosing the building block ratio in connection with their quantum yield.
RESUMO
Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels, and magneto-responsive aerogels are obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release systems using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption, and emission spectroscopy, bulk density, and mechanical measurements, as well as in vitro release profile measurements, are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities as low as 5.6 mg cm-3 for 0.5% (w/v) the mucilage polymer, a specific surface area of 4 to 20 m2 g-1 , high oil absorption capacity (23 g g-1 ), and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave- and electromagnetic radiation protective (absorbing)-materials, as well as in drug delivery and oil absorption.
Assuntos
Linho , Nanopartículas , Liberação Controlada de Fármacos , Géis/química , PorosidadeRESUMO
The assembly of CdSe/CdS dot/rod nanocrystals (NCs) with variable length of ZnS tips into aerogel networks is presented. To this end, a partial region selective cation exchange procedure is performed replacing Cd by Zn starting at the NC tip. The produced aerogel networks are investigated structurally and optically. The networks of tip-to-tip connected NCs have an intricate band structure with holes confined to the CdSe cores while electrons are delocalized within the CdS also within connected building blocks. However, the ZnS tips act as a barrier of variable length and strength between the NC building blocks partly confining the electrons. This results in NC based aerogel networks with tunable strength of coupling between building blocks.
RESUMO
The assembly of individual colloidal nanocrystals into macroscopic solvogels and aerogels introduced a new exciting type of material into the class of porous architectures. In these so-called nanocrystal gels, the structure and properties can be controlled and fine-tuned to the smallest details. Recently it was shown that by employing nanocrystal building blocks for such gel materials, the interesting nanoscopic properties can be conserved or even expanded to properties that are available neither in the nanocrystals nor in their respective bulk materials. In general, the production of these materials features the wet-chemical synthesis of stable nanocrystal colloids followed by their carefully controlled destabilization to facilitate arrangement of the nanocrystals into highly porous, interconnected networks. By isolation of the synthesis of the discrete building blocks from the assembly process, the electronic structure, optical properties, and structural morphology can be tailored by the myriad of procedures developed in colloidal nanocrystal chemistry. Furthermore, knowledge and control over the structure-property correlation in the resulting gel structures opens up numerous new ways for extended and advanced applications. Consequently, the amount of different materials converted to nanocrystal-based gel structures is rising steadily. Meanwhile the number of methods for assembly initiation is likewise increasing, offering control over the overall network structure and porosity as well as the individual nanocrystal building block connection. The resulting networks can be dried by different methods to obtain highly porous air-filled networks (aerogels) or applied in their wet form (solvogels). By now a number of different applications profiting from the unique advantages of nanocrystal-based gel materials have been realized and exploited in the areas of photocatalysis, electrocatalysis, and sensing.In this Account, we aim to summarize the efforts undertaken in the structuring of nanocrystal-based network materials on different scales, fine-tuning of the individual building blocks on the nanoscale, the network connections on the microscale, and the macroscale structure and shape of the final construct. It is exemplarily demonstrated how cation exchange reactions (at the nanoscale), postgelation modifications on the nanocrystal networks (microscale), and the structuring of the gels via printing techniques (macroscale) endow the resulting nanocrystal gel networks with novel physicochemical, mechanical, and electrocatalytic properties. The methods applied in the more traditional sol-gel chemistry targeting micro- and macroscale structuring are also reviewed, showing their future potential promoting the field of nanocrystal-based aerogels and their applications.
RESUMO
Minimalistic 2-(oxazolinyl)-phenols substituted with different electron-donating and -withdrawing groups as well as 1,2,5-chalcogenadiazole-annulated derivatives thereof were synthesized and investigated in regard to their emission behavior in solution as well as in the solid state. Depending on the nature of the incorporated substituent and its position, emission efficiencies were increased or diminished, resulting in AIE or ACQ characteristics. Single-crystal analysis revealed J- and H-type packing motifs and a so-far undescribed isolation of ESIPT-based fluorophores in the keto form.
Assuntos
Fenóis , Prótons , Elétrons , Corantes FluorescentesRESUMO
3D nanoparticle assemblies offer a unique platform to enhance and extend the functionality and optical/electrical properties of individual nanoparticles. Especially, a self-supported, voluminous, and porous macroscopic material built up from interconnected semiconductor nanoparticles provides new possibilities in the field of sensing, optoelectronics, and photovoltaics. Herein, a method is demonstrated for assembling semiconductor nanoparticle systems containing building blocks possessing different composition, size, shape, and surface ligands. The method is based on the controlled destabilization of the particles triggered by trivalent cations (Y3+ , Yb3+ , and Al3+ ). The effect of the cations is investigated via X-ray photoelectron spectroscopy. The macroscopic, self-supported aerogels consist of the hyperbranched network of interconnected CdSe/CdS dot-in-rods, or CdSe/CdS as well as CdSe/CdTe core-crown nanoplatelets is used to demonstrate the versatility of the procedure. The non-oxidative assembly method takes place at room temperature without thermal activation in several hours and preserves the shape and the fluorescence of the building blocks. The assembled nanoparticle network provides longer exciton lifetimes with retained photoluminescence quantum yields, that make these nanostructured materials a perfect platform for novel multifunctional 3D networks in sensing. Various sets of photoelectrochemical measurements on the interconnected semiconductor nanorod structures also reveal the enhanced charge carrier separation.
RESUMO
Nanoparticle-based voluminous 3D networks with low densities are a unique class of materials and are commonly known as aerogels. Due to the high surface-to-volume ratio, aerogels and xerogels might be suitable materials for applications in different fields, e.g. photocatalysis, catalysis, or sensing. One major difficulty in the handling of nanoparticle-based aerogels and xerogels is the defined patterning of these structures on different substrates and surfaces. The automated manufacturing of nanoparticle-based aerogel- or xerogel-coated electrodes can easily be realized via inkjet printing. The main focus of this work is the implementation of the standard nanoparticle-based gelation process in a commercial inkjet printing system. By simultaneously printing semiconductor nanoparticles and a destabilization agent, a 3D network on a conducting and transparent surface is obtained. First spectro-electrochemical measurements are recorded to investigate the charge-carrier mobility within these 3D semiconductor-based xerogel networks.
RESUMO
The assembly of nanocrystals (NCs) into three-dimensional network structures is a recently established strategy to produce macroscopic materials with nanoscopic properties. These networks can be formed by the controlled destabilization of NC colloids and subsequent supercritical drying to obtain NC-based aerogels. Even though this strategy has been used for many different semiconductor NCs, the emission of NC-based aerogels is limited to the ultraviolet and visible and no near-infrared (NIR) emitting NC-based aerogels have been investigated in literature until now. In the present work we have optimized a gelation route of NIR emitting PbS and PbS/CdS quantum dots (QDs) by means of a recently established gel formation method using trivalent ions to induce the network formation. Thereby, depending on the surface ligands and QDs used the resulting network structure is different. We propose, that the ligand affinity to the nanocrystal surface plays an essential role during network formation, which is supported by theoretical calculations. The optical properties were investigated with a focus on their steady-state and time resolved photoluminescence (PL). Unlike in PbS/CdS aerogels, the absorption of PbS aerogels and their PL shift strongly. For all aerogels the PL lifetimes are reduced in comparison to those of the building blocks with this reduction being especially pronounced in the PbS aerogels.
RESUMO
Room-temperature sodium-sulfur (RT Na-S) batteries are arousing great interest in recent years. Their practical applications, however, are hindered by several intrinsic problems, such as the sluggish kinetic, shuttle effect, and the incomplete conversion of sodium polysulfides (NaPSs). Here a sulfur host material that is based on tungsten nanoparticles embedded in nitrogen-doped graphene is reported. The incorporation of tungsten nanoparticles significantly accelerates the polysulfides conversion (especially the reduction of Na2 S4 to Na2 S, which contributes to 75% of the full capacity) and completely suppresses the shuttle effect, en route to a fully reversible reaction of NaPSs. With a host weight ratio of only 9.1% (about 3-6 times lower than that in recent reports), the cathode shows unprecedented electrochemical performances even at high sulfur mass loadings. The experimental findings, which are corroborated by the first-principles calculations, highlight the so far unexplored role of tungsten nanoparticles in sulfur hosts, thus pointing to a viable route toward stable Na-S batteries at room temperatures.
RESUMO
Boron-nitrogen substitutions in polycyclic aromatic hydrocarbons (PAHs) have a strong impact on the optical properties of the molecules due to a significantly more heterogeneous electron distribution. However, besides these single-molecule properties, the observed optical properties of PAHs critically depend on the degree of intermolecular interactions such as π-π-stacking, dipolar interactions, or the formation of dimers in the excited state. Pyrene is the most prominent example showing the latter as it exhibits a broadened and strongly bathochromically shifted emission band at high concentrations in solution compared to the respective monomers. In the solid state, the impact of intermolecular interactions is even higher as it determines the crystal packing crucially. In this work, a thiophene-flanked BN-pyrene (BNP) was synthesized and compared with its all-carbon analogue (CCP) in solution and in the solid state by means of crystallography, NMR spectroscopy, UV-vis spectroscopy, and photoluminescence (PL) spectroscopy. In solution, PL spectroscopy revealed the solvent-dependent presence of excimers of CCP at high concentrations. In contrast, no excimers were found in BNP. Clear differences were also observed in the single-crystal packing motifs. While CCP revealed overlapped pyrene planes with centroid distances in the range of classical π-stacking interactions, the BNP scaffolds were displaced and significantly more spatially separated.
RESUMO
Noble-metal-based electrocatalysts usually contain small nanoparticle building blocks to ensure a high specific surface area as the scene for the surface processes. Here, we show that relatively large noble-metal nanorods are also promising candidates to build up functional macrostructures with prominent electrocatalytic activity. After optimizing and upscaling the syntheses of gold nanorods and gold bipyramid-templated silver nanorods, cryoaerogels are fabricated on a conductive substrate via flash freezing and subsequent freeze drying. The versatile cryoaerogelation technique allows the formation of macrostructures with dendritic, open-pore structure facilitating the increase of the accessible nanorod surfaces. It is demonstrated via electrochemical oxidation and stripping test experiments that noble-metal surface sites are electrochemically active in redox reactions. Furthermore, gold nanorod cryoaerogels offer a platform for redox sensing, ethanol oxidation reaction, as well as glucose sensing. Compared to their simply drop-cast and dried counterparts, the noble-metal nanorod cryoaerogels offer enhanced activity due to the open porosity of the fabricated nanostructure while maintaining structural stability.
RESUMO
This contribution focuses on the green synthesis of silver nanoparticles (AgNPs) with a size < 100 nm for potential medical applications by using silver nitrate solution and Hypericum Perforatum L. (St John's wort) aqueous extracts. Various synthesis methods were used and compared with regard to their yield and quality of obtained AgNPs. Monodisperse spherical nanoparticles were generated with a size of approximately 20 to 50 nm as elucidated by different techniques (SEM, TEM). XRD measurements showed that metallic silver was formed and the particles possess a face-centered cubic structure (fcc). SEM images and FTIR spectra revealed that the AgNPs are covered by a protective surface layer composed of organic components originating from the plant extract. Ultraviolet-visible spectroscopy, dynamic light scattering, and zeta potential were also measured for biologically synthesized AgNPs. A potential mechanism of reducing silver ions to silver metal and protecting it in the nanoscale form has been proposed based on the obtained results. Moreover, the AgNPs prepared in the present study have been shown to exhibit a high antioxidant activity for 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, and super oxide anion radical and 2,2-diphenyl-1-picrylhydrazyl. Synthesized AgNPs showed high cytotoxicity by inhibiting cell viability for Hela, Hep G2, and A549 cells.
RESUMO
The synthesis of four well-defined conjugated polymers TStTT1-4 containing unusual heterocycle units in the main chain, namely stannole units as building blocks, is reported. The stannole-thiophenyl copolymers were generated by tin-selective Stille coupling reactions in nearly quantitative yields of 94% to 98%. NMR data show that the tin atoms in the rings remain unaffected. Weight-average molecular weights (M w) were high (4900-10 900 Da and 9600-21 900 Da); and molecular weight distributions (M w/M n) were between 1.9 and 2.3. The new materials are strongly absorbing and appear blue-black to purple-black. All iodothiophenyl-stannole monomers St1-4 and the resulting bisthiophenyl-stannole copolymers TStTT1-4 were investigated with respect to their optoelectronic properties. The absorption maxima of the polymers are strongly bathochromically shifted compared to their monomers by about 76 nm to 126 nm in chloroform. Density functional theory calculations support our experimental results of the single stannoles St1-4 showing small HOMO-LUMO energy gaps of 3.17-3.24 eV. The optical band gaps of the polymers are much more decreased and were determined to be only 1.61-1.79 eV. Furthermore, both the molecular structures of stannoles St2 and St3 from single crystal X-ray analyses and the results of the geometry optimisation by DFT confirm the high planarity of the molecules backbone leading to efficient conjugation within the molecule.
RESUMO
Lithium-sulfur (Li-S) batteries have attracted widespread attention due to their high theoretical energy density. However, their practical application is still hindered by the shuttle effect and the sluggish conversion of lithium polysulfides (LiPSs). Herein, monodisperse molybdenum (Mo) nanoparticles embedded onto nitrogen-doped graphene (Mo@N-G) were developed and used as a highly efficient electrocatalyst to enhance LiPS conversion. The weight ratio of the electrocatalyst in the catalyst/sulfur cathode is only 9%. The unfilled d orbitals of oxidized Mo can attract the electrons of LiPS anions and form Mo-S bonds during the electrochemical process, thus facilitating fast conversion of LiPSs. Li-S batteries based on the Mo@N-G/S cathode can exhibit excellent rate performance, large capacity, and superior cycling stability. Moreover, Mo@N-G also plays an important role in room-temperature quasi-solid-state Li-S batteries. These interesting findings suggest the great potential of Mo nanoparticles in building high-performance Li-S batteries.
RESUMO
Oxazolinyl- and arylchalcogenazolyl-substituted hydroxyfluorenes exhibiting excited-state intramolecular proton transfer (ESIPT) are described as potent and highly modular luminophores. Emission color tuning was achieved by varying the π-expansion and the insertion of different chalcogen atoms.
RESUMO
Over the past decades, cation exchange reactions applied to nanoparticles have opened up synthetic pathways to nanocrystals, which were not accessible by other means before. The limitation of cation exchange on the macroscopic scale of bulk materials is given by the limited ion diffusion within the crystal structure. Lyogels or aerogels are macroscopic, highly voluminous, porous materials composed of interconnected nanoscopic building blocks and hence represent a type of bridge between the macroscopic and the nanoscopic world. To demonstrate the feasibility of cation exchange on such macroscopic nanomaterials, the cation exchange on CdSe/CdS core/shell and CdS nanorod based lyogels to Cu2-xSe/Cu2-xS and Cu2-xS and the reversible exchange back to CdSe/CdS and CdS lyogels is presented. These copper-based lyogels can also be used as an intermediate state on the way to other metal chalcogenide-based macroscopic structures. By reversed cation exchange back to cadmium an additional proof is given, that the crystal structures remain unchanged. It is shown that cation exchange reactions can also be transferred to macroscopic objects like aerogels or lyogels. This procedure additionally allows the access of aerogels which cannot be synthesized via direct destabilization of the respective colloidal solutions.
RESUMO
The reaction of methanol to light olefins and water (MTO) was studied in a fixed bed tubular membrane reactor using commercial SAPO-34 catalyst. In the fixed bed reactor without membrane support, the MTO reaction collapsed after 3â h time on stream. However, if the reaction by-product steam is inâ situ extracted from the reactor through a hydrophilic tubular LTA membrane, the reactor produces long-term stable about 60 % ethene and 10 % propene. It is shown that the reason for the superior performance of the membrane-assisted reactor is not the prevention of catalyst damage caused by steam but the influence of the water removal on the formation of different carbonaceous residues inside the SAPO-34 cages. Catalytically beneficial methylated 1 or 2 ring aromatics have been found in a higher percentage in the MTO reaction with a water removal membrane compared to the MTO reaction without membrane support.
RESUMO
The influence of interparticle contact in nanoparticle-based aerogel network structures is investigated by selectively connecting or isolating the building blocks inside of the network, thereby coupling and decoupling them in regards to their optical and electronic properties. This is achieved by tuning the synthesis sequence and exchanging the point of shell growth and the point of particle assembly, leading to two distinctly different structures as examined by electron microscopy. By thorough examination of the resulting optical properties of the generated structures, the clear correlation between nanoscopic/microscopic structure and macroscopic optical properties is demonstrated. Temperature-dependent measurements and effective mass approximation calculations support our findings.
RESUMO
Increasing demands in the field of sensing, especially for gas detection applications, require new approaches to chemical sensors. Metal-organic frameworks (MOFs) can play a decisive role owing to their outstanding performances regarding gas selectivity and sensitivity. The tetrathiafulvalene (TTF)-infiltrated MOF, Co-MOF-74, has been prepared following the host-guest concept and evaluated in resistive gas sensing. The Co-MOF-74-TTF crystal morphology has been characterized via X-ray diffraction and scanning electron microscopy, while the successful incorporation of TTF into the MOF has been validated via X-ray photoemission spectroscopy, thermogravimetric analysis, UV/vis, infrared (IR), and Raman investigations. We demonstrate a reduced yet ample uptake of CO2 in the pores of the new material by IR imaging and adsorption isotherms. The nanocomposite Co-MOF-74-TTF exhibits an increased electrical conductivity in comparison to Co-MOF-74 which can be influenced by gas adsorption from a surrounding atmosphere. This effect could be used for gas sensing.