Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(10): e2110756119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235447

RESUMO

SignificanceAerosol-cloud interaction affects the cooling of Earth's climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.

2.
Proc Natl Acad Sci U S A ; 116(41): 20309-20314, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548411

RESUMO

Four North Atlantic Aerosol and Marine Ecosystems Study (NAAMES) field campaigns from winter 2015 through spring 2018 sampled an extensive set of oceanographic and atmospheric parameters during the annual phytoplankton bloom cycle. This unique dataset provides four seasons of open-ocean observations of wind speed, sea surface temperature (SST), seawater particle attenuation at 660 nm (cp,660, a measure of ocean particulate organic carbon), bacterial production rates, and sea-spray aerosol size distributions and number concentrations (NSSA). The NAAMES measurements show moderate to strong correlations (0.56 < R < 0.70) between NSSA and local wind speeds in the marine boundary layer on hourly timescales, but this relationship weakens in the campaign averages that represent each season, in part because of the reduction in range of wind speed by multiday averaging. NSSA correlates weakly with seawater cp,660 (R = 0.36, P << 0.01), but the correlation with cp,660, is improved (R = 0.51, P < 0.05) for periods of low wind speeds. In addition, NAAMES measurements provide observational dependence of SSA mode diameter (dm) on SST, with dm increasing to larger sizes at higher SST (R = 0.60, P << 0.01) on hourly timescales. These results imply that climate models using bimodal SSA parameterizations to wind speed rather than a single SSA mode that varies with SST may overestimate SSA number concentrations (hence cloud condensation nuclei) by a factor of 4 to 7 and may underestimate SSA scattering (hence direct radiative effects) by a factor of 2 to 5, in addition to overpredicting variability in SSA scattering from wind speed by a factor of 5.

4.
Environ Sci Technol ; 53(16): 9429-9438, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31348654

RESUMO

The mixing state of black carbon (BC) affects its environmental fate and impacts. This work investigates particle diversity and mixing state for refractory BC (rBC) containing particles in an urban environment. The chemical compositions of individual rBC-containing particles were measured, from which a mixing state index and particle diversity were determined. The mixing state index (χ) varied between 26% and 69% with the average of 48% in this study and was slightly enhanced with the photochemical age of air masses, indicating that most of the rBC-containing particles cannot be simply explained by fully externally and internally mixed model. Clustering of single particle measurements was used to investigate the potential effects of different primary emissions and atmospheric processes on rBC-containing particle diversity and mixing state. The average particle species diversity and the bulk population species diversity both increased with primary traffic emissions and elevated nitrate concentrations in the morning but gradually decreased with secondary organic aerosol (SOA) formation in the afternoon. The single particle clustering results illustrate that primary traffic emissions and entrainment of nitrate-containing rBC particles from the residual layer to the surface could lead to more heterogeneous aerosol compositions, whereas substantial fresh SOA formation near vehicular emissions made the rBC-containing particles more homogeneous. This work highlights the importance of considering particle diversity and mixing state for investigating the chemical evolution of rBC-containing particles and the potential effects of coating on BC absorption enhancement.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Carbono , Monitoramento Ambiental , Tamanho da Partícula
5.
Environ Sci Technol ; 51(11): 6542-6552, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28441489

RESUMO

Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.


Assuntos
Aerossóis , Gasolina , Emissões de Veículos , Poluentes Atmosféricos , California , Certificação , Clima , Veículos Automotores
6.
Nature ; 525(7568): 194-5, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26354479
7.
Proc Natl Acad Sci U S A ; 110(19): 7550-5, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23620519

RESUMO

The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.


Assuntos
Aerossóis/química , Atmosfera/química , Bactérias/metabolismo , Fitoplâncton/metabolismo , Água do Mar/química , Clorofila/química , Clorofila A , Ecologia , Oceanografia , Oceanos e Mares
8.
Proc Natl Acad Sci U S A ; 109(45): 18318-23, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091031

RESUMO

Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.


Assuntos
Aerossóis/análise , Carbono/análise , Gasolina/análise , Compostos Orgânicos/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Compostos Orgânicos Voláteis/análise
9.
Proc Natl Acad Sci U S A ; 108(9): 3516-21, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317360

RESUMO

Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.


Assuntos
Aerossóis/análise , Atmosfera/química , Compostos Orgânicos/análise , Material Particulado/química , Biomassa , Incêndios , Combustíveis Fósseis/análise , Geografia , Água do Mar/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Atmos Meas Tech ; 17(8): 2401-2413, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38845819

RESUMO

Globally, billions of people burn fuels indoors for cooking and heating, which contributes to millions of chronic illnesses and premature deaths annually. Additionally, residential burning contributes significantly to black carbon emissions, which have the highest global warming impacts after carbon dioxide and methane. In this study, we use Fourier transform infrared spectroscopy (FTIR) to analyze fine-particulate emissions collected on Teflon membrane filters from 15 cookstove types and 5 fuel types. Emissions from three fuel types (charcoal, kerosene, and red oak wood) were found to have enough FTIR spectral response for functional group (FG) analysis. We present distinct spectral profiles for particulate emissions of these three fuel types. We highlight the influential FGs constituting organic carbon (OC) using a multivariate statistical method and show that OC estimates by collocated FTIR and thermal-optical transmittance (TOT) are highly correlated, with a coefficient determination of 82.5 %. As FTIR analysis is fast and non-destructive and provides complementary FG information, the analysis method demonstrated herein can substantially reduce the need for thermal-optical measurements for source emissions.

11.
Sci Adv ; 10(12): eadi8594, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507486

RESUMO

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

12.
Environ Sci Technol ; 47(8): 3781-7, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23448102

RESUMO

In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA.


Assuntos
Aerossóis/análise , Gases/análise , Compostos Orgânicos/análise , Material Particulado/análise , Aldeídos , Ânions/análise , Carbono/análise , Cátions/análise , Cromatografia Gasosa , Ciclobutanos , Cetonas/análise , Oxigênio/análise , Ácidos Ftálicos , Fatores de Tempo , Pressão de Vapor
13.
Environ Sci Technol ; 47(20): 11403-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24004194

RESUMO

Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.


Assuntos
Aerossóis/análise , Aerossóis/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Anidridos/química , Atmosfera/química , Compostos de Epóxi/química , Radical Hidroxila/química , Metacrilatos/química , Oxirredução , Sulfatos/química , Temperatura , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 107(15): 6652-7, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20080571

RESUMO

Oceans cover over two-thirds of the Earth's surface, and the particles emitted to the atmosphere by waves breaking on sea surfaces provide an important contribution to the planetary albedo. During the International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT) cruise on the R/V Knorr in March and April of 2008, organic mass accounted for 15-47% of the submicron particle mass in the air masses sampled over the North Atlantic and Arctic Oceans. A majority of this organic component (0.1-0.4 microm(-3)) consisted of organic hydroxyl (including polyol and other alcohol) groups characteristic of saccharides, similar to biogenic carbohydrates found in seawater. The large fraction of organic hydroxyl groups measured during ICEALOT in submicron atmospheric aerosol exceeded those measured in most previous campaigns but were similar to particles in marine air masses in the open ocean (Southeast Pacific Ocean) and coastal sites at northern Alaska (Barrow) and northeastern North America (Appledore Island and Chebogue Point). The ocean-derived organic hydroxyl mass concentration during ICEALOT correlated strongly to submicron Na concentration and wind speed. The observed submicron particle ratios of marine organic mass to Na were enriched by factors of approximately 10(2)-approximately 10(3) over reported sea surface organic to Na ratios, suggesting that the surface-controlled process of film bursting is influenced by the dissolved organic components present in the sea surface microlayer. Both marine organic components and Na increased with increasing number mean diameter of the accumulation mode, suggesting a possible link between organic components in the ocean surface and aerosol-cloud interactions.


Assuntos
Carboidratos/química , Aerossóis , Alaska , Atmosfera , Radical Hidroxila , América do Norte , Oceanos e Mares , Compostos Orgânicos , Oceano Pacífico , Tamanho da Partícula , Sais/química , Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vento
15.
Sci Data ; 10(1): 471, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474611

RESUMO

In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.

16.
Environ Sci Technol ; 46(24): 13326-33, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23181806

RESUMO

Aerosol particles produced from bubble bursting of natural seawater contain both sea salts and organic components. Depending on the temperature, pressure, and speed of drying, the salt components can form hydrates that bind water, slowing evaporation of the water, particularly if large particles or thick layers of salts undergo drying that is nonuniform and incomplete. The water bound in these salt hydrates interferes with measuring organic hydroxyl and amine functional groups by Fourier transform infrared (FTIR) spectroscopy because it absorbs at the same infrared wavelengths. Here, a method for separating the hydrate water in sea salt hydrates using freezing and then heating in warm, dry air (70 °C) is evaluated and compared to other methods, including spectral subtraction. Laboratory-generated sea salt analogs show an efficient removal of 89% of the hydrate water absorption peak height by 24 h of heating at atmospheric pressure. The heating method was also applied to bubbled submicrometer (Sea Sweep), generated bulk (Bubbler), and atomized seawater samples, with efficient removal of 5, 22, and 39 µg of hydrate water from samples of initial masses of 11, 30, 58 µg, respectively. The strong spectral similarity between the difference of the initial and dehydrated spectra and the laboratory-generated sea salt hydrate spectrum provided verification of the removal of hydrate water. In contrast, samples of submicrometer atmospheric particles from marine air masses did not have detectable signatures of sea salt hydrate absorbance, likely because their smaller particles and lower filter loadings provided higher surface area to volume ratios and allowed faster and more complete drying.


Assuntos
Dessecação , Radical Hidroxila/isolamento & purificação , Sais/isolamento & purificação , Água do Mar/química , Atmosfera/química , Material Particulado/química , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Environ Sci Technol ; 46(24): 13093-102, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163290

RESUMO

Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning.


Assuntos
Aerossóis/análise , Biomassa , Incêndios , Compostos Orgânicos/análise , África Ocidental , Monóxido de Carbono/análise , Fatores de Tempo
18.
J Phys Chem A ; 116(32): 8271-90, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22734593

RESUMO

This article summarizes and compares the analysis of the surfaces of natural aerosol particles from three different forest environments by vibrational sum frequency generation. The experiments were carried out directly on filter and impactor substrates, without the need for sample preconcentration, manipulation, or destruction. We discuss the important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation by showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 µm and lower appears to be close to size-invariant. We also discuss the concept of molecular chirality as a chemical marker that could be useful for quantifying how chemical constituents in the SOA gas phase and the SOA particle phase are related in time. Finally, we describe how the combination of multiple disciplines, such as aerosol science, advanced vibrational spectroscopy, meteorology, and chemistry can be highly informative when studying particles collected during atmospheric chemistry field campaigns, such as those carried out during HUMPPA-COPEC-2010, AMAZE-08, or BEARPEX-2009, and when they are compared to results from synthetic model systems such as particles from the Harvard Environmental Chamber (HEC). Discussions regarding the future of SOA chemical analysis approaches are given in the context of providing a path toward detailed spectroscopic assignments of SOA particle precursors and constituents and to fast-forward, in terms of mechanistic studies, through the SOA particle formation process.

19.
Ambio ; 41(4): 350-69, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430307

RESUMO

Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO(2)) removal (CDR), which removes CO(2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.


Assuntos
Dióxido de Carbono/química , Ecossistema , Luz Solar , Mudança Climática , Conservação dos Recursos Naturais/métodos , Meio Ambiente
20.
J Chem Phys ; 129(9): 094508, 2008 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19044878

RESUMO

Deliquescence properties of sodium chloride are size dependent for particles smaller than 100 nm. Molecular dynamics (MD) simulations are used to determine deliquescence relative humidity (DRH) for particles in this size range by modeling idealized particles in contact with humid air. Constant humidity conditions are simulated by inclusion of a liquid reservoir of NaCl solution in contact with the vapor phase, which acts as a source of water molecules as uptake by the nanoparticle proceeds. DRH is bounded between the minimum humidity at which sustained water accumulation is observed at the particle surface and the maximum humidity at which water accumulation is not observed. Complete formation of a liquid layer is not observed due to computational limitations. The DRH determined increases with decreasing particle diameter, rising to between 91% and 93% for a 2.2 nm particle and between 81% and 85% for an 11 nm particle, higher than the 75% expected for particles larger than 100 nm. The simulated size dependence of DRH agrees well with predictions from bulk thermodynamic models and appears to converge with measurements for sizes larger than 10 nm. Complete deliquescence of nanoparticles in the 2-11 nm size range requires between 1 and 100 mus, exceeding the available computational resources for this study. Water uptake coefficients are near 0.1 with a negligible contribution from diffusion effects. Planar uptake coefficients decrease from 0.41 to 0.09 with increasing fractional water coverage from 0.002 to 1, showing a linear dependence on the logarithm of the coverage fraction with a slope of -0.08+/-0.01 (representing the effect of solvation). Particle uptake coefficients increase from 0.13 at 11 nm to 0.65 at 2.2 nm, showing a linear dependence on the logarithm of the edge fraction (which is a function of diameter) with a slope of 0.74+/-0.04 (representing larger edge effects in smaller particles).


Assuntos
Atmosfera/química , Simulação por Computador , Modelos Químicos , Nanopartículas/química , Cloreto de Sódio/química , Água/química , Umidade , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA