Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674417

RESUMO

Targeted therapeutics made significant advances in the treatment of patients with advanced clear cell renal cell carcinoma (ccRCC). Resistance and serious adverse events associated with standard therapy of patients with advanced ccRCC highlight the need to identify alternative 'druggable' targets to those currently under clinical development. Although the Von Hippel-Lindau (VHL) and Polybromo1 (PBRM1) tumor-suppressor genes are the two most frequently mutated genes and represent the hallmark of the ccRCC phenotype, stable expression of hypoxia-inducible factor-1α/2α (HIFs), microRNAs-210 and -155 (miRS), transforming growth factor-beta (TGF-ß), nuclear factor erythroid 2-related factor 2 (Nrf2), and thymidine phosphorylase (TP) are targets overexpressed in the majority of ccRCC tumors. Collectively, these altered biomarkers are highly interactive and are considered master regulators of processes implicated in increased tumor angiogenesis, metastasis, drug resistance, and immune evasion. In recognition of the therapeutic potential of the indicated biomarkers, considerable efforts are underway to develop therapeutically effective and selective inhibitors of individual targets. It was demonstrated that HIFS, miRS, Nrf2, and TGF-ß are targeted by a defined dose and schedule of a specific type of selenium-containing molecules, seleno-L-methionine (SLM) and methylselenocystein (MSC). Collectively, the demonstrated pleiotropic effects of selenium were associated with the normalization of tumor vasculature, and enhanced drug delivery and distribution to tumor tissue, resulting in enhanced efficacy of multiple chemotherapeutic drugs and biologically targeted molecules. Higher selenium doses than those used in clinical prevention trials inhibit multiple targets altered in ccRCC tumors, which could offer the potential for the development of a new and novel therapeutic modality for cancer patients with similar selenium target expression. Better understanding of the underlying mechanisms of selenium modulation of specific targets altered in ccRCC could potentially have a significant impact on the development of a more efficacious and selective mechanism-based combination for the treatment of patients with cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Selênio , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Selênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Biomarcadores , MicroRNAs/genética , MicroRNAs/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216330

RESUMO

Selenium has been extensively evaluated clinically as a chemopreventive agent with variable results depending on the type and dose of selenium used. Selenium species are now being therapeutically evaluated as modulators of drug responses rather than as directly cytotoxic agents. In addition, recent data suggest an association between selenium base-line levels in blood and survival of patients with COVID-19. The major focus of this mini review was to summarize: the pathways of selenium metabolism; the results of selenium-based chemopreventive clinical trials; the potential for using selenium metabolites as therapeutic modulators of drug responses in cancer (clear-cell renal-cell carcinoma (ccRCC) in particular); and selenium usage alone or in combination with vaccines in the treatment of patients with COVID-19. Critical therapeutic targets and the potential role of different selenium species, doses, and schedules are discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias/tratamento farmacológico , Selênio/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , COVID-19/virologia , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Selênio/química , Selênio/metabolismo , Selênio/farmacologia
3.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628416

RESUMO

This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines-RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL-and in the four ccRCC with sarcomatoid differentiation-RCJ41T1, RCJ41T2, RCJ41M, and UOK-127-indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Biópsia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , MicroRNAs/metabolismo
4.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380599

RESUMO

Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies.


Assuntos
Antineoplásicos/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , MicroRNAs/genética , Selenocisteína/análogos & derivados , Selenometionina/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Fluoruracila/uso terapêutico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos Nus , Selenocisteína/uso terapêutico , Topotecan/uso terapêutico
5.
Gastroenterology ; 145(2): 437-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23619147

RESUMO

BACKGROUND & AIMS: Vitamin D protects against colorectal cancer through unclear mechanisms. We investigated the effects of calcitriol (1α,25-dihydroxyvitamin D3; the active form of vitamin D) on levels of different microRNAs (miRNAs) in colorectal cancer cells from humans and xenograft tumors in mice. METHODS: Expression of miRNAs in colorectal cancer cell lines was examined using the Ambion mirVana miRNA Bioarray. The effects of calcitriol on expression of miR-627 and cell proliferation were determined by real-time polymerase chain reaction and WST-1 assay, respectively; growth of colorectal xenograft tumors was examined in nude mice. Real-time polymerase chain reaction was used to analyze levels of miR-627 in human colon adenocarcinoma samples and nontumor colon mucosa tissues (controls). RESULTS: In HT-29 cells, miR-627 was the only miRNA significantly up-regulated by calcitriol. Jumonji domain containing 1A (JMJD1A), which encodes a histone demethylase, was found to be a target of miR-627. By down-regulating JMJD1A, miR-627 increased methylation of histone H3K9 and suppressed expression of proliferative factors, such as growth and differentiation factor 15. Calcitriol induced expression of miR-627, which down-regulated JMJD1A and suppressed growth of xenograft tumors from HCT-116 cells in nude mice. Overexpression of miR-627 prevented proliferation of colorectal cancer cell lines in culture and growth of xenograft tumors in mice. Conversely, blocking the activity of miR-627 inhibited the tumor suppressive effects of calcitriol in cultured colorectal cancer cells and in mice. Levels of miR-627 were decreased in human colon adenocarcinoma samples compared with controls. CONCLUSIONS: miR-627 mediates tumor-suppressive epigenetic activities of vitamin D on colorectal cancer cells and xenograft tumors in mice. The messenger RNA that encodes the histone demethylase JMJD1A is a direct target of miR-627. Reagents designed to target JMJD1A or its messenger RNA, or increase the function of miR-627, might have the same antitumor activities of vitamin D without the hypercalcemic side effects.


Assuntos
Calcitriol/fisiologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Epigênese Genética/fisiologia , MicroRNAs/fisiologia , Vitaminas/fisiologia , Animais , Calcitriol/farmacologia , Neoplasias Colorretais/fisiopatologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Transplante Heterólogo , Vitaminas/farmacologia
6.
BMC Cancer ; 12: 293, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22804960

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) accounts for more than 80% of the cases of renal cell carcinoma. In ccRCC deactivation of Von-Hippel-Lindau (VHL) gene contributes to the constitutive expression of hypoxia inducible factors 1 and 2 alpha (HIF-α), transcriptional regulators of several genes involved in tumor angiogenesis, glycolysis and drug resistance. We have demonstrated inhibition of HIF-1α by Se-Methylselenocysteine (MSC) via stabilization of prolyl hydroxylases 2 and 3 (PHDs) and a significant therapeutic synergy when combined with chemotherapy. This study was initiated to investigate the expression of PHDs, HIF-α, and VEGF-A in selected solid cancers, the mechanism of HIF-α inhibition by MSC, and to document antitumor activity of MSC against human ccRCC xenografts. METHODS: Tissue microarrays of primary human cancer specimens (ccRCC, head & neck and colon) were utilized to determine the incidence of PHD2/3, HIF-α, and VEGF-A by immunohistochemical methods. To investigate the mechanism(s) of HIF-α inhibition by MSC, VHL mutated ccRCC cells RC2 (HIF-1α positive), 786-0 (HIF-2α positive) and VHL wild type head & neck cancer cells FaDu (HIF-1α) were utilized. PHD2 and VHL gene specific siRNA knockdown and inhibitors of PHD2 and proteasome were used to determine their role in the degradation of HIF-1α by MSC. RESULTS: We have demonstrated that ccRCC cells express low incidence of PHD2 (32%), undetectable PHD3, high incidence of HIF-α (92%), and low incidence of VEGF-A compared to head & neck and colon cancers. This laboratory was the first to identify MSC as a highly effective inhibitor of constitutively expressed HIF-α in ccRCC tumors. MSC did not inhibit HIF-1α protein synthesis, but facilitated its degradation. The use of gene knockdown and specific inhibitors confirmed that the inhibition of HIF-1α was PHD2 and proteasome dependent and VHL independent. The effects of MSC treatment on HIF-α were associated with significant antitumor activity against ccRCC xenograft. CONCLUSIONS: Our results show the role of PHD2/3 in stable expression of HIF-α in human ccRCC. Furthermore, HIF-1α degradation by MSC is achieved through PHD2 dependent and VHL independent pathway which is unique for HIF-α regulation. These data provide the basis for combining MSC with currently used agents for ccRCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Compostos Organosselênicos/farmacologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dioxigenases/genética , Dioxigenases/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia , Neoplasias Renais/genética , Camundongos , Camundongos Nus , Pró-Colágeno-Prolina Dioxigenase/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Pathol ; 176(4): 1629-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20133811

RESUMO

Survival has been implicated to play an important role in various pathophysiological processes. However, because of a lack of appropriate animal models, the role and dynamic expression of survivin during pathophysiology are not well defined. We generated a human survivin gene promoter-driven luciferase transgenic mouse model (SPlucTg) so that dynamic survivin gene activity can be monitored during various pathophysiological conditions using in vivo imaging. Our results show that, consistent with survivin positivity in testis, luciferase activity in normal SPlucTg mice was detected in the testis of male mice. Furthermore, similar to the known requirement of transient expression of survivin for pathophysiological responses, we observed a transient luciferase expression in castrated SPlucTg male mice after supplement of androgen. Significantly, it was reported that survivin expression turns on during mouse liver injury and regeneration; a transient and dose-dependent luciferase expression in the mouse liver was observed after administration of carbon tetrachloride into SPlucTg mice. We further demonstrated that luciferase activity closely correlates with endogenous survivin expression. We also demonstrated that only a subset of cells expresses survivin, and its expression overlaps with the expression of several stem cell markers tested. Thus, we have generated a unique animal model for analysis of diverse pathophysiological processes and possible stem cell distribution/activity in vivo.


Assuntos
Regulação da Expressão Gênica , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Repressoras/biossíntese , Células-Tronco/citologia , Androgênios/biossíntese , Androgênios/metabolismo , Animais , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas Inibidoras de Apoptose/metabolismo , Fígado/lesões , Fígado/patologia , Luminescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração , Proteínas Repressoras/metabolismo , Survivina , Testículo/metabolismo
8.
Mol Cancer ; 9: 310, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21126356

RESUMO

BACKGROUND: Beta-catenin is a multifunctional oncogenic protein that contributes fundamentally to cell development and biology. Elevation in expression and activity of ß-catenin has been implicated in many cancers and associated with poor prognosis. Beta-catenin is degraded in the cytoplasm by glycogen synthase kinase 3 beta (GSK-3ß) through phosphorylation. Cell growth and proliferation is associated with ß-catenin translocation from the cytoplasm into the nucleus. This laboratory was the first to demonstrate that selenium-containing compounds can enhance the efficacy and cytotoxicity of anticancer drugs in several preclinical xenograft models. These data provided the basis to identify mechanism of selenium action focusing on ß-catenin as a target. This study was designed to: (1) determine whether pharmacological doses of methylseleninic acid (MSeA) have inhibitory effects on the level and the oncogenic activity of ß-catenin, (2) investigate the kinetics and the mechanism of ß-catenin inhibition, and (3) confirm that inhibition of ß-catenin would lead to enhanced cytotoxicity of standard chemotherapeutic drugs. RESULTS: In six human cancer cell lines, the inhibition of total and nuclear expression of ß-catenin by MSeA was dose and time dependent. The involvement of GSK-3ß in the degradation of ß-catenin was cell type dependent (GSK-3ß-dependent in HT-29, whereas GSK-3ß-independent in HCT-8). However, the pronounced inhibition of ß-catenin by MSeA was independent of various drug treatments and was not reversed after combination therapy.Knockout of ß-catenin by ShRNA and its inhibition by MSeA yielded similar enhancement of cytotoxicity of anticancer drugs.Collectively, the generated data demonstrate that ß-catenin is a target of MSeA and its inhibition resulted in enhanced cytotoxicity of chemotherapeutic drugs. CONCLUSIONS: This study demonstrates that ß-catenin, a molecule associated with drug resistance, is a target of selenium and its inhibition is associated with increased multiple drugs cytotoxicity in various human cancers. Further, degradation of ß-catenin by GSK-3ß is not a general mechanism but is cell type dependent.


Assuntos
Neoplasias/metabolismo , beta Catenina/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Humanos , Compostos Organoplatínicos/farmacologia , Compostos Organosselênicos/farmacologia , Oxaliplatina , Paclitaxel/farmacologia , Interferência de RNA , Taxoides/farmacologia , Topotecan/farmacologia , beta Catenina/genética
9.
Clin Cancer Res ; 15(9): 3189-95, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19383814

RESUMO

PURPOSE: We conducted a phase I study to determine the maximum tolerated dose of vorinostat in combination with fixed doses of 5-fluorouracil (FU), leucovorin, and oxaliplatin (FOLFOX). EXPERIMENTAL DESIGN: Vorinostat was given orally twice daily for 1 week every 2 weeks. FOLFOX was given on days 4 and 5 of vorinostat. The vorinostat starting dose was 100 mg twice daily. Escalation occurred in cohorts of three to six patients. Pharmacokinetics of vorinostat, FU, and oxaliplatin were studied. RESULTS: Twenty-one patients were enrolled. Thrombocytopenia, neutropenia, gastrointestinal toxicities, and fatigue increased in frequency and severity at higher dose levels of vorinostat. Two of 4 evaluable patients at dose level 4 (vorinostat 400 mg orally twice daily) developed dose-limiting fatigue. One of 10 evaluable patients at dose level 3 (vorinostat 300 mg orally twice daily) had dose-limiting fatigue, anorexia, and dehydration. There were significant relationships between vorinostat dose and the area under the curve on days 1 and 5 (Pearson, < 0.001). The vorinostat area under the curve increased (P = 0.005) and clearance decreased (P = 0.003) on day 5 compared with day 1. The median C(max) of FU at each dose level increased significantly with increasing doses of vorinostat, suggesting a pharmacokinetic interaction between FU and vorinostat. Vorinostat-induced thymidylate synthase (TS) modulation was not consistent; only two of six patients had a decrease in intratumoral TS expression by reverse transcription-PCR. CONCLUSIONS: The maximum tolerated dose of vorinostat in combination with FOLFOX is 300 mg orally twice daily x 1 week every 2 weeks. Alternative vorinostat dosing schedules may be needed for optimal down-regulation of TS expression.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Adenocarcinoma/secundário , Adulto , Idoso , Estudos de Coortes , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Prognóstico , Taxa de Sobrevida , Distribuição Tecidual , Resultado do Tratamento , Vorinostat
10.
Chemotherapy ; 56(3): 223-33, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20551639

RESUMO

BACKGROUND: The purpose of this study was: (1) to document the critical requirement of cystine for growth of human tumor cells in vitro, and (2) to determine the effect of the anticancer agent irinotecan on the cystine transporter x(c)(-) in head and neck FaDu xenografts. METHODS: Cell growth was measured by sulforhodamine B assay. xCT protein, glutathione (GSH) and DNA damage were determined using Western blot, spectrophotometry, and immunohistochemistry, respectively. RESULTS: Depletion of cystine from the medium inhibited tumor cell growth. Treatment of FaDu tumor with a therapeutic dose of irinotecan resulted in depression of xCT protein levels, leading to tumor growth retardation and downregulation of GSH with increased reactive oxygen species (ROS). The accumulation of ROS correlated with increased DNA damage as evidenced by increased H2AX. CONCLUSION: Depression of xCT protein by irinotecan resulted in downregulation of GSH and increase in ROS, which could be the other possible mechanisms of DNA damage by irinotecan.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Camptotecina/análogos & derivados , Cistina/fisiologia , Regulação para Baixo/fisiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos/biossíntese , Animais , Camptotecina/farmacologia , Linhagem Celular Tumoral , Cistina/antagonistas & inibidores , Cistina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Irinotecano , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Clin Colorectal Cancer ; 8(1): 11-4, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19203891

RESUMO

The outcome of advanced colorectal cancer (CRC) has steadily improved with the addition of several novel agents. However, chemotherapy is associated with significant toxicities such as diarrhea and bone marrow suppression. Celecoxib has been associated with decreased gastrointestinal toxicity and improved chemotherapy tolerance in preclinical in vivo models, resulting in its investigation in CRC clinical trials. These trials failed to show any improvements in efficacy or reduction in chemotherapy-induced toxicity. This article summarizes relevant preclinical and clinical investigations of celecoxib in CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Celecoxib , Ensaios Clínicos como Assunto , Inibidores de Ciclo-Oxigenase/administração & dosagem , Humanos , Irinotecano , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina
12.
Clin Cancer Res ; 14(12): 3926-32, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559614

RESUMO

PURPOSE: Our previously reported therapeutic synergy between naturally occurring seleno-amino acid methylselenocysteine (MSC) and anticancer drugs could not be shown in vitro. Studies were carried out to investigate the potential role of MSC-induced tumor vascular maturation and increased drug delivery in the observed therapeutic synergy in vivo. EXPERIMENTAL DESIGN: Mice bearing s.c. FaDu human head and neck squamous cell carcinoma xenografts were treated with MSC (0.2 mg/d x 14 days orally). Changes in microvessel density (CD31), vascular maturation (CD31/alpha-smooth muscle actin), perfusion (Hoechst 33342/DiOC7), and permeability (dynamic contrast-enhanced magnetic resonance imaging) were determined at the end of the 14-day treatment period. Additionally, the effect of MSC on drug delivery was investigated by determining intratumoral concentration of doxorubicin using high-performance liquid chromatography and fluorescence microscopy. RESULTS: Double immunostaining of tumor sections revealed a marked reduction ( approximately 40%) in microvessel density accompanying tumor growth inhibition following MSC treatment along with a concomitant increase in the vascular maturation index ( approximately 30% > control) indicative of increased pericyte coverage of microvessels. Hoechst 33342/DiOC7 staining showed improved vessel functionality, and dynamic contrast-enhanced magnetic resonance imaging using the intravascular contrast agent, albumin-GdDTPA, revealed a significant reduction in vascular permeability following MSC treatment. Consistent with these observations, a 4-fold increase in intratumoral doxorubicin levels was observed with MSC pretreatment compared with administration of doxorubicin alone. CONCLUSION: These results show, for the first time, the antiangiogenic effects of MSC results in tumor growth inhibition, vascular maturation in vivo, and enhanced anticancer drug delivery that are associated with the observed therapeutic synergy in vivo.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Cisteína/análogos & derivados , Sistemas de Liberação de Medicamentos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Compostos Organosselênicos/administração & dosagem , Animais , Permeabilidade Capilar/efeitos dos fármacos , Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/patologia , Cisteína/administração & dosagem , Sinergismo Farmacológico , Feminino , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/patologia , Selenocisteína/análogos & derivados , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Chemother Pharmacol ; 62(3): 499-508, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17989978

RESUMO

PURPOSE: We conducted a phase I study to determine the recommended dose of selenomethionine (SLM) in combination with irinotecan that consistently results in a protective plasma selenium (Se) concentrations > 15 microM after 1 week of SLM loading. EXPERIMENTAL DESIGN: A 3-3 standard escalation design was followed. SLM was given orally twice daily (BID) for one week (loading) followed by continuous once daily (QD) dosing (maintenance). Seven dose levels of selenomethionine were investigated. Irinotecan was given intravenously at a fixed standard weekly dose, starting on the first day of maintenance SLM. RESULTS: Thirty-one patients were treated on study. Dose limiting diarrhea complicated by sepsis was noted in one of six patients at each of the dose-levels 1 and 7. Dose-levels > or = 5 (4,800 mcg/dose loading maintenance) resulted in day 8 Se concentrations >15 microM while dose-level 7 (7,200 mcg/dose loading and maintenance) resulted in day 8 Se concentrations > 20 muM. No significant variations in SN-38 or biliary index were noted between weeks 1 and 4 of treatment. Despite achieving target Se concentrations, gastrointestinal and bone marrow toxicities were common and irinotecan dose modification was prevalent. Objective responses were seen in two patients and nine patients had disease control for 6 months or longer. CONCLUSIONS: Selenomethionine can be escalated safely to 7,200 mcg BID x 1 week followed by 7,200 mcg QD in combination with a standard dose of irinotecan. No major protection against irinotecan toxicity was established; however, interesting clinical benefits were noted-supporting the investigation of this combination in future efficacy trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias/tratamento farmacológico , Administração Oral , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Irinotecano , Masculino , Pessoa de Meia-Idade , Selenometionina/administração & dosagem , Selenometionina/efeitos adversos , Selenometionina/farmacocinética , Selenometionina/uso terapêutico , Resultado do Tratamento
14.
Clin Cancer Res ; 13(3): 965-71, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17289892

RESUMO

PURPOSE: Chemotherapy-induced diarrhea occurs secondary to mucosal inflammation and may be cyclooxygenase-2 mediated. Cyclooxygenase-2 inhibitors may ameliorate chemotherapy-induced mucosal toxicity and enhance its antitumor effect. We investigated this hypothesis in the Ward colorectal cancer rat model and in a phase I clinical study. EXPERIMENTAL DESIGN: In the Ward rat model, irinotecan was given daily x 3 or weekly x 4 with or without celecoxib. In the phase I clinical study, we planned to escalate the dose of irinotecan in the FOLFIRI regimen (irinotecan, 5-fluorouracil, and leucovorin) with a fixed dose of celecoxib. Irinotecan was escalated in four dose levels: 180, 200, 220, and 260 mg/m2. Celecoxib was administered as 400 mg, twice daily starting on day 2 of cycle 1. Pharmacokinetics of irinotecan, SN-38, and SN-38G were obtained on days 1 and 14. A standard 3+3 dose escalation scheme was used. Plasma concentrations of irinotecan, SN-38, and SN-38G were measured using high-pressure liquid chromatography. RESULTS: Celecoxib ameliorated diarrhea, weight loss, and lethality and resulted in synergistic antitumor effect in the rat model. Twelve patients with advanced cancers were enrolled and evaluable for dose-limiting toxicity (DLT). Diarrhea was the cause for discontinuation in one. Grade 2 and 3 diarrhea occurred in three and two patients, respectively. One patient had DLT at dose level 2 (grade 3 diarrhea). Two had a DLT at DL3 (G3 emesis and myocardial infarct). Celecoxib had limited influence on the pharmacokinetics of irinotecan in this data set. CONCLUSIONS: Maximum tolerated dose of irinotecan in FOLFIRI schedule with celecoxib is 200 mg/m2.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Mucosite/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/uso terapêutico , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/uso terapêutico , Celecoxib , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/uso terapêutico , Glucuronatos/administração & dosagem , Humanos , Mucosa Intestinal/patologia , Irinotecano , Leucovorina/uso terapêutico , Masculino , Dose Máxima Tolerável , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
15.
Oncotarget ; 9(12): 10765-10783, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535842

RESUMO

Selenium (Se)-containing molecules exert antioxidant properties and modulate targets associated with tumor growth, metastasis, angiogenesis, and drug resistance. Prevention clinical trials with low-dose supplementation of different types of Se molecules have yielded conflicting results. Utilizing several xenograft models, we earlier reported that the enhanced antitumor activity of various chemotherapeutic agents by selenomethione and Se-methylselenocysteine in several human tumor xenografts is highly dose- and schedule-dependent. Further, Se pretreament offered selective protection of normal tissues from drug-induced toxicity, thereby allowing higher dosing than maximum tolerated doses. These enhanced therapeutic effects were associated with inhibition of hypoxia-inducible factor 1- and 2-alpha (HIF1α, HIF2α) protein, nuclear factor (erythyroid-derived 2)-like 2 (Nrf2) and pair-related homeobox-1 (Prx1) transcription factors, downregulation of oncogenic- and upregulation of tumor suppressor miRNAs. This review provides: 1) a brief update of clinical prevention trials with Se; 2) advances in the use of specific types, doses, and schedules of Se that selectively modulate antitumor activity and toxicity of anti-cancer drugs; 3) identification of targets selectively modulated by Se; 4) plasma and tumor tissue Se levels achieved after oral administration of Se in xenograft models and cancer patients; 5) development of a phase 1 clinical trial with escalating doses of orally administered selenomethionine in sequential combination with axitinib to patients with advanced clear cell renal cell carcinoma; and 6) clinical prospects for future therapeutic use of Se in combination with anticancer drugs.

16.
Biochem Pharmacol ; 73(9): 1280-7, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17239826

RESUMO

This study was designed to understand the basis for the efficacy of methylselenocysteine (MSC) in increasing the therapeutic index of irinotecan against human tumor xenografts. Nude mice bearing human head and neck squamous cells carcinoma xenografts (FaDu and A253) were treated orally with different doses of MSC and irinotecan. Plasma, tumor and normal tissue samples were collected at different times after MSC treatments and were analyzed for selenium (Se) concentration using electrothermal atomic absorption spectrophotometry. MSC is highly effective in modulating the therapeutic index of irinotecan. Enhanced irinotecan efficacy was greater in FaDu tumors (100% CR) than in A253 tumors (60% CR), and depended on MSC dose with a minimum effective dose of 0.01 mg/dx28. The highest plasma Se concentration was achieved 1h after a single dose and 28 d after daily treatments of MSC. The ability of FaDu tumors to retain Se was significantly better than A253 tumors, and the highest Se concentration in normal tissue was achieved in the liver. Peak plasma and tissue Se concentrations were functions of the dose and duration of MSC treatment. The MSC-dependent increase in Se level in normal tissues may contribute to the protective effect against irinotecan toxicity observed in those tissues. Intratumoral total Se concentration was not found to be predictive of the combination therapy response rates. There is a critical need to develop a method to measure the active metabolite of MSC, rather than total Se.


Assuntos
Camptotecina/análogos & derivados , Cisteína/análogos & derivados , Neoplasias/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Plasma/efeitos dos fármacos , Selênio/sangue , Administração Oral , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Cisteína/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Humanos , Irinotecano , Rim/efeitos dos fármacos , Rim/metabolismo , Cinética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Nus , Plasma/química , Plasma/metabolismo , Selênio/metabolismo , Selênio/farmacocinética , Selenocisteína/análogos & derivados
17.
Clin Cancer Res ; 12(4): 1237-44, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16489079

RESUMO

PURPOSE: We conducted a phase I study to determine the maximum tolerated dose (MTD) of irinotecan with fixed, nontoxic high dose of selenomethionine. EXPERIMENTAL DESIGN: Selenomethionine was given orally as a single daily dose containing 2,200 mug of elemental selenium (Se) starting 1 week before the first dose of irinotecan. Irinotecan was given i.v. once weekly x 4 every 6 weeks (one cycle). The starting dose of irinotecan was 125 mg/m(2)/wk. Escalation occurred in cohorts of three patients until the MTD was defined. Pharmacokinetic studies were done for selenium and irinotecan and its metabolites. RESULTS: Three of four evaluable patients at dose level 2 of irinotecan (160 mg/m(2)/wk) had a dose-limiting diarrhea. None of the six evaluable patients at dose level 1 (125 mg/m(2)/wk irinotecan) had a dose-limiting toxicity. One patient with history of irinotecan-refractory colon cancer achieved a partial response. The long half-life of selenium resulted in a prolonged accumulation towards steady-state concentrations. No significant changes in the pharmacokinetics of CPT-11, SN-38, or SN-38G were identified; however, the coadministration of selenomethionine significantly reduced the irinotecan biliary index, which has been associated with gastrointestinal toxicity. CONCLUSIONS: Selenomethionine at 2,200 mug/d did not allow the safe escalation of irinotecan beyond the previously defined MTD of 125 mg/m(2). None of the patients receiving 125 mg/m(2) of irinotecan had grade >2 diarrhea. Unexpected responses and disease stabilizations were noted in a highly refractory population. Further escalation of selenomethionine is recommended in future trials to achieve defined protective serum concentrations of selenium.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Administração Oral , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Área Sob a Curva , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Diarreia/induzido quimicamente , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravenosas , Irinotecano , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Neoplasias/metabolismo , Selenometionina/administração & dosagem , Selenometionina/efeitos adversos , Selenometionina/farmacocinética , Resultado do Tratamento
18.
Cancer Res ; 65(21): 9829-33, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16267005

RESUMO

We have developed genetically fluorescent orthotopic models of human pancreatic cancer. In these models, noninvasive fluorescent protein imaging (FPI) of internal primary tumors and metastatic deposits has been carried out. Whole-body tumor images are easily and inexpensively obtained using FPI, permitting both detection and quantification of tumor load. In this study, we simultaneously compared single mice with a highly fluorescent, red fluorescent protein-expressing orthotopic pancreatic cancer xenografts with both FPI and high-resolution magnetic resonance imaging (MRI). Images were acquired at multiple time points after tumor implantation in the pancreas. Indwelling pancreatic primary tumors and metastatic foci were detected by both FPI and MRI. Moreover, a strong correlation existed between images taken with these two technologies. FPI permitted rapid, high-throughput imaging without the need for either anesthesia or contrast agents. Both FPI and MRI enabled accurate imaging of tumor growth and metastasis, although MRI enabled tissue structure to be visualized as well. FPI has high resolution and is exceedingly rapid with instant image capture. We suggest a complimentary role for these two imaging modalities.


Assuntos
Proteínas Luminescentes/análise , Neoplasias Pancreáticas/diagnóstico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Imunofluorescência/métodos , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transplante Heterólogo , Proteína Vermelha Fluorescente
19.
Mol Cancer Ther ; 5(10): 2540-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17041098

RESUMO

The study was designed to evaluate the combination treatment of methylselenocysteine (MSeC) and docetaxel and to delineate the underlying mechanism associated with observed in vitro synergy between MSeC and docetaxel in prostate cancer cells. Cells were treated with different concentrations and schedules (concurrent or sequential) of MSeC and docetaxel alone or in combination. Cell growth/death was assessed with sulforhodamine B assay, trypan blue assay, and time-lapse video. Loewe synergism/antagonism model was used to determine whether the combination effect was additive, synergistic, or antagonistic. Apoptosis and caspase-3 activity were evaluated with cell death ELISA assay and caspase activity assay, respectively. Synergy between MSeC and docetaxel was further assessed in the presence and absence of z-VAD-fmk, a pan-caspase inhibitor. Effect of MSeC and docetaxel alone or in combination on the cellular expression of the antiapoptotic protein survivin was measured with Western blot analyses. Pretreatment with MSeC was crucial to enhance docetaxel antitumor activity. The enhanced antitumor activity of the sequential combination treatment of MSeC and docetaxel (MSeC/docetaxel) was highly synergistic. Apoptosis increased after MSeC/docetaxel, compared with each drug alone or concurrent treatment. Pretreatment with z-VAD-fmk converted the synergy into antagonism, suggesting that the synergy is caspase-dependent apoptosis. The survivin level was down-regulated following MSeC/docetaxel treatment when compared with each drug alone. In conclusion, pretreatment with MSeC was essential to markedly sensitize cells to docetaxel. The synergy between MSeC and docetaxel in C2G prostate cancer cells is associated with increased level of caspase-dependent apoptosis and decreased level of survivin.


Assuntos
Antineoplásicos/farmacologia , Cisteína/análogos & derivados , Compostos Organosselênicos/farmacologia , Taxoides/farmacologia , Animais , Anticarcinógenos/farmacologia , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cisteína/farmacologia , Docetaxel , Regulação para Baixo , Sinergismo Farmacológico , Ativação Enzimática , Proteínas Inibidoras de Apoptose , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Próstata , Selenocisteína/análogos & derivados , Survivina
20.
Int J Radiat Oncol Biol Phys ; 65(5): 1462-70, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16750332

RESUMO

PURPOSE: We conducted a Phase I study to determine the maximum tolerated dose (MTD) of neoadjuvant capecitabine, oxaliplatin, and radiation therapy (RT) in Stage II to III rectal adenocarcinoma. METHODS AND MATERIALS: Capecitabine was given orally twice daily Monday through Friday concurrently with RT. Oxaliplatin was given i.v. once weekly x 5 (for 5 weeks) starting the first day of RT. RT was given daily except on weekends and holidays at 1.8 Gy per fraction x 28. Escalation for capecitabine or oxaliplatin was to occur in cohorts of three patients until the maximum tolerated dose (MTD) was defined. Endorectal tumor biopsy samples were obtained before and on Day 3 of treatment to explore the effects of treatment on thymidine phosphorylase, thymidylate synthase, dihydropyrimidine dehydrogenase, DNA repair, and apoptosis. RESULTS: Twelve patients were enrolled on this study. Two of 6 patients at dose level (DL) 1 (capecitabine 825 mg/m2 orally (p.o.) given twice daily (b.i.d.); oxaliplatin 50 mg/m2/week) had a dose-limiting diarrhea. One of 6 patients at DL (-)1 (capecitabine 725 mg/m2 p.o., b.i.d.; oxaliplatin 50 mg/m2/week) experienced-dose-limiting diarrhea. Three of 11 patients who underwent resection had a complete pathologic response. No remarkable variations in rectal tumor biologic endpoints were noted on Day 3 of treatment in comparison to baseline. However, a higher apotosis index was observed at baseline and on Day 3 in complete pathologic responders (no statistical analysis performed). CONCLUSIONS: Capecitabine 725 mg/m2 p.o., twice daily in combination with oxaliplatin 50 mg/m2/week and RT 50.4 Gy in 28 fractions is the recommended dose for future studies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Desoxicitidina/análogos & derivados , Compostos Organoplatínicos/administração & dosagem , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/radioterapia , Administração Oral , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Apoptose , Capecitabina , Quimioterapia Adjuvante , Reparo do DNA , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Esquema de Medicação , Feminino , Fluoruracila/análogos & derivados , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Radioterapia Adjuvante , Neoplasias Retais/enzimologia , Timidina Fosforilase/metabolismo , Timidilato Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA