Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS Biol ; 21(4): e3002070, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011100

RESUMO

During development, patterned neural activity instructs topographic map refinement. Axons with similar patterns of neural activity converge onto target neurons and stabilize their synapses with these postsynaptic partners, restricting exploratory branch elaboration (Hebbian structural plasticity). On the other hand, non-correlated firing in inputs leads to synapse weakening and increased exploratory growth of axons (Stentian structural plasticity). We used visual stimulation to control the correlation structure of neural activity in a few ipsilaterally projecting (ipsi) retinal ganglion cell (RGC) axons with respect to the majority contralateral eye inputs in the optic tectum of albino Xenopus laevis tadpoles. Multiphoton live imaging of ipsi axons, combined with specific targeted disruptions of brain-derived neurotrophic factor (BDNF) signaling, revealed that both presynaptic p75NTR and TrkB are required for Stentian axonal branch addition, whereas presumptive postsynaptic BDNF signaling is necessary for Hebbian axon stabilization. Additionally, we found that BDNF signaling mediates local suppression of branch elimination in response to correlated firing of inputs. Daily in vivo imaging of contralateral RGC axons demonstrated that p75NTR knockdown reduces axon branch elongation and arbor spanning field volume.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Dendritos , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Dendritos/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Sinapses/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193956

RESUMO

The development of functional topography in the developing brain follows a progression from initially coarse to more precisely organized maps. To examine the emergence of topographically organized maps in the retinotectal system, we performed longitudinal visual receptive field mapping by calcium imaging in the optic tectum of GCaMP6-expressing transgenic Xenopus laevis tadpoles. At stage 42, just 1 d after retinal axons arrived in the optic tectum, a clear retinotopic azimuth map was evident. Animals were imaged over the following week at stages 45 and 48, over which time the tectal neuropil nearly doubled in length and exhibited more precise retinotopic organization. By microinjecting GCaMP6s messenger ribonucleic acid (mRNA) into one blastomere of two-cell stage embryos, we acquired bilateral mosaic tadpoles with GCaMP6s expression in postsynaptic tectal neurons on one side of the animal and in retinal ganglion cell axons crossing to the tectum on the opposite side. Longitudinal observation of retinotopic map emergence revealed the presence of orderly representations of azimuth and elevation as early as stage 42, although presynaptic inputs exhibited relatively less topographic organization than the postsynaptic component for the azimuth axis. Retinotopic gradients in the tectum became smoother between stages 42 and 45. Blocking N-methyl-D-aspartate (NMDA) receptor conductance by rearing tadpoles in MK-801 did not prevent the emergence of retinotopic maps, but it produced more discontinuous topographic gradients and altered receptive field characteristics. These results provide evidence that current through NMDA receptors is dispensable for coarse topographic ordering of retinotectal inputs but does contribute to the fine-scale organization of the retinotectal projection.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Retina/diagnóstico por imagem , Retina/embriologia , Animais , Axônios/metabolismo , Mapeamento Encefálico/métodos , Cálcio/metabolismo , Larva/metabolismo , Células Ganglionares da Retina/fisiologia , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Vias Visuais/crescimento & desenvolvimento , Xenopus laevis/embriologia
3.
PLoS Biol ; 18(11): e3000965, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232322

RESUMO

Near-infrared (NIR) genetically encoded calcium ion (Ca2+) indicators (GECIs) can provide advantages over visible wavelength fluorescent GECIs in terms of reduced phototoxicity, minimal spectral cross talk with visible light excitable optogenetic tools and fluorescent probes, and decreased scattering and absorption in mammalian tissues. Our previously reported NIR GECI, NIR-GECO1, has these advantages but also has several disadvantages including lower brightness and limited fluorescence response compared to state-of-the-art visible wavelength GECIs, when used for imaging of neuronal activity. Here, we report 2 improved NIR GECI variants, designated NIR-GECO2 and NIR-GECO2G, derived from NIR-GECO1. We characterized the performance of the new NIR GECIs in cultured cells, acute mouse brain slices, and Caenorhabditis elegans and Xenopus laevis in vivo. Our results demonstrate that NIR-GECO2 and NIR-GECO2G provide substantial improvements over NIR-GECO1 for imaging of neuronal Ca2+ dynamics.


Assuntos
Cálcio/metabolismo , Imagem Óptica/métodos , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Indicadores e Reagentes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Optogenética , Engenharia de Proteínas , Espectroscopia de Luz Próxima ao Infravermelho , Xenopus laevis/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(20): 10636-10638, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366647

RESUMO

In a small fraction of Xenopus tadpoles, a single retinal ganglion cell (RGC) axon misprojects to the ipsilateral optic tectum. Presenting flashes of light to the ipsilateral eye causes that ipsilateral axon to fire, whereas stimulating the contralateral eye excites all other RGC inputs to the tectum. We performed time-lapse imaging of individual ipsilaterally projecting axons while stimulating either the ipsilateral or contralateral eye. Stimulating either eye alone reduced axon elaboration by increasing branch loss. New branch additions in the ipsi axon were exclusively increased by contralateral eye stimulation, which was enhanced by expressing tetanus neurotoxin (TeNT) in the ipsilateral axon, to prevent Hebbian stabilization. Together, our results reveal the existence of a non-cell-autonomous "Stentian" signal, engaged by activation of neighboring RGCs, that promotes exploratory axon branching in response to noncorrelated firing.


Assuntos
Neurogênese , Plasticidade Neuronal , Células Ganglionares da Retina/fisiologia , Potenciais de Ação , Animais , Axônios/fisiologia , Dendritos/fisiologia , Células Ganglionares da Retina/citologia , Potenciais Sinápticos , Visão Ocular , Xenopus
5.
J Neurosci ; 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103360

RESUMO

Neuro-immune interaction during development is strongly implicated in the pathogenesis of neurodevelopmental disorders, but the mechanisms that cause neuronal circuit dysregulation are not well understood. We performed in vivo imaging of the developing retinotectal system in the larval zebrafish to characterize the effects of immune system activation on refinement of an archetypal sensory processing circuit. Acute inflammatory insult induced hyper-dynamic remodeling of developing retinal axons in larval fish and increased axon arbor elaboration over days. Using calcium imaging in GCaMP6s transgenic fish we showed that these morphological changes were accompanied by a shift toward decreased visual acuity in tectal cells. This finding was supported by poorer performance in a visually guided behavioral task. We further found that the pro-inflammatory cytokine, interleukin-1ß (IL-1ß) is upregulated by the inflammatory insult, and that down-regulation of IL-1ß abrogated the effects of inflammation on axonal dynamics and growth. Moreover, baseline branching of the RGC arbors in IL-1ß morphant animals was significantly different from that in control larvae, and their performance in a predation assay was impaired, indicating a role for this cytokine in normal neuronal development. This work establishes a simple and powerful non-mammalian model of developmental immune activation and demonstrates a role for IL-1ß in mediating the pathological effects of inflammation on neuronal circuit development.SIGNIFICANCE STATEMENTMaternal immune activation (MIA) can increase the risk of neurodevelopmental disorders in offspring, however the mechanisms involved are not fully understood. Using a non-mammalian vertebrate model of developmental immune activation, we show that even brief activation of inflammatory pathways has immediate and long-term effects on the arborization of axons, and that these morphological changes have functional and behavioral consequences. Finally, we show that the pro-inflammatory cytokine IL-1ß plays an essential role in both the effects of inflammation on circuit formation and normal axonal development. Our data add to a growing body of evidence supporting epidemiological studies linking immune activation to neurodevelopmental disorders, and help shed light on the molecular and cellular processes that contribute to the etiology of these disorders.

6.
J Physiol ; 599(2): 493-505, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017127

RESUMO

Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.


Assuntos
Hipocampo , Plasticidade Neuronal , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Netrina-1/metabolismo , Sinapses/metabolismo
7.
Learn Mem ; 26(3): 77-83, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770464

RESUMO

Netrin-1 was initially characterized as an axon guidance molecule that is essential for normal embryonic neural development; however, many types of neurons continue to express netrin-1 in the postnatal and adult mammalian brain. Netrin-1 and the netrin receptor DCC are both enriched at synapses. In the adult hippocampus, activity-dependent secretion of netrin-1 by neurons potentiates glutamatergic synapse function, and is critical for long-term potentiation, an experimental cellular model of learning and memory. Here, we assessed the impact of neuronal expression of netrin-1 in the adult brain on behavior using tests of learning and memory. We show that adult mice exhibit impaired spatial memory following conditional deletion of netrin-1 from glutamatergic neurons in the hippocampus and neocortex. Further, we provide evidence that mice with conditional deletion of netrin-1 do not display aberrant anxiety-like phenotypes and show a reduction in self-grooming behavior. These findings reveal a critical role for netrin-1 expressed by neurons in the regulation of spatial memory formation.


Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Netrina-1/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal , Feminino , Ácido Glutâmico/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo
8.
Dev Dyn ; 247(4): 588-619, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29226543

RESUMO

Converging lines of evidence from basic science and clinical studies suggest a relationship between maternal immune activation (MIA) and neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. The mechanisms through which MIA increases the risk of neurodevelopmental disorders have become a subject of intensive research. This review aims to describe how dysregulation of microglial function and immune mechanisms may link MIA and neurodevelopmental pathologies. We also summarize the current evidence in animal models of MIA. Developmental Dynamics 247:588-619, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Imunidade Ativa , Transtornos do Neurodesenvolvimento/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Gravidez
9.
J Neurosci ; 37(26): 6277-6288, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28550169

RESUMO

The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter d-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of d-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous d-serine is normally present below saturating levels in the developing visual system of the Xenopus tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous d-serine levels in the optic tectum. Chronically elevating levels of d-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous d-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in d-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for d-serine as an endogenous modulator of circuit refinement.SIGNIFICANCE STATEMENT Activation of NMDARs is critical for the activity-dependent development and maintenance of highly organized topographic maps. d-Serine, a coagonist of the NMDAR, plays a significant role in modulating NMDAR-mediated synaptic transmission and plasticity in many brain areas. However, it remains unknown whether d-serine participates in the establishment of precise neuronal connections during development. Using an in vivo model, we show that glutamate receptor activation can evoke endogenous d-serine release, which promotes glutamatergic synapse maturation and stabilizes axonal structural and functional inputs. These results reveal a pivotal modulatory role for d-serine in neurodevelopment.


Assuntos
Axônios/fisiologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Sinapses/fisiologia , Animais , Neurotransmissores/metabolismo , Xenopus laevis
10.
J Neurosci ; 36(19): 5279-88, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170125

RESUMO

UNLABELLED: Radial glia in the developing optic tectum extend highly dynamic filopodial protrusions within the tectal neuropil, the motility of which has previously been shown to be sensitive to neural activity and nitric oxide (NO) release. Using in vivo two-photon microscopy, we performed time-lapse imaging of radial glial cells and measured filopodial motility in the intact albino Xenopus laevis tadpole. Application of MK801 to block neuronal NMDA receptor (NMDAR) currents confirmed a significant reduction in radial glial filopodial motility. This reduction did not occur in glial cells expressing a dominant-negative form of cGMP-dependent protein kinase 1 (PKG1), and was prevented by elevation of cGMP levels with the phosphodiesterase type 5 inhibitor sildenafil. These results suggest that neuronal NMDAR activation results in the release of NO, which in turn modulates PKG1 activation in glial cells to control filopodial motility. We further showed that interfering with the function of the small GTPases Rac1 or RhoA, known to be regulated by PKG1 phosphorylation, decreased motility or eliminated filopodial processes respectively. These manipulations led to profound defects in excitatory synaptic development and maturation of neighboring neurons. SIGNIFICANCE STATEMENT: Radial glia in the developing brain extend motile filopodia from their primary stalk. Neuronal NMDA receptor activity controls glial motility through intercellular activation of cGMP-dependent protein kinase 1 (PKG1) signaling in glial cells. Manipulating PKG1, Rac1, or RhoA signaling in radial glia in vivo to eliminate glial filopodia or impair glial motility profoundly impacted synaptogenesis and circuit maturation.


Assuntos
Movimento Celular , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Neuroglia/metabolismo , Vias Visuais/crescimento & desenvolvimento , Animais , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Maleato de Dizocilpina/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Pseudópodes/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Citrato de Sildenafila/farmacologia , Sinapses/metabolismo , Vias Visuais/metabolismo , Xenopus laevis , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
11.
J Neurosci ; 33(44): 17278-89, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174661

RESUMO

Netrin-1 is a secreted protein that directs long-range axon guidance during early stages of neural circuit formation and continues to be expressed in the mammalian forebrain during the postnatal period of peak synapse formation. Here we demonstrate a synaptogenic function of netrin-1 in rat and mouse cortical neurons and investigate the underlying mechanism. We report that netrin-1 and its receptor DCC are widely expressed by neurons in the developing mammalian cortex during synapse formation and are enriched at synapses in vivo. We detect DCC protein distributed along the axons and dendrites of cultured cortical neurons and provide evidence that newly translated netrin-1 is selectively transported to dendrites. Using gain and loss of function manipulations, we demonstrate that netrin-1 increases the number and strength of excitatory synapses made between developing cortical neurons. We show that netrin-1 increases the complexity of axon and dendrite arbors, thereby increasing the probability of contact. At sites of contact, netrin-1 promotes adhesion, while locally enriching and reorganizing the underlying actin cytoskeleton through Src family kinase signaling and m-Tor-dependent protein translation to locally cluster presynaptic and postsynaptic proteins. Finally, we demonstrate using whole-cell patch-clamp electrophysiology that netrin-1 increases the frequency and amplitude of mEPSCs recorded from cortical pyramidal neurons. These findings identify netrin-1 as a synapse-enriched protein that promotes synaptogenesis between mammalian cortical neurons.


Assuntos
Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fatores de Crescimento Neural/fisiologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/biossíntese , Netrina-1 , Neurogênese/genética , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Proteínas Supressoras de Tumor/biossíntese
12.
Anal Chem ; 86(7): 3501-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24650010

RESUMO

At the synapse, D-serine is an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR). It plays an important role in synaptic transmission and plasticity and has also been linked to several pathological diseases such as schizophrenia and Huntington's. The quantification of local changes in D-serine concentration is essential to further understanding these processes. We report herein the development of a disk-shaped amperometric enzymatic biosensor for detection of D-serine based on a 25 µm diameter platinum disk microelectrode with an electrodeposited poly-m-phenylenediamine (PPD) layer and an R. gracilis D-amino acid oxidase (RgDAAO) layer. The disk-shaped D-serine biosensor is 1-5 orders of magnitude smaller than previously reported probes and exhibits a sensitivity of 276 µA cm(-2) mM(-1) with an in vitro detection limit of 0.6 µM. We demonstrate its usefulness for in vivo applications by measuring the release of endogenous D-serine in the brain of Xenopus laevis tadpoles.


Assuntos
Técnicas Biossensoriais , D-Aminoácido Oxidase/química , Técnicas Eletroquímicas/instrumentação , Serina/análise , Animais , Limite de Detecção , Microeletrodos , Xenopus laevis
13.
Cell Rep ; 43(2): 113812, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377003

RESUMO

The ability of the mammalian brain to maintain spatial representations of external or internal information for short periods of time has been associated with sustained neuronal spiking and reverberatory neural network activity in the medial entorhinal cortex. Here, we show that conditional genetic deletion of netrin-1 or the netrin receptor deleted-in-colorectal cancer (DCC) from forebrain excitatory neurons leads to deficits in short-term spatial memory. We then demonstrate that conditional deletion of either netrin-1 or DCC inhibits cholinergic persistent firing and show that cholinergic activation of muscarinic receptors expressed by entorhinal cortical neurons promotes persistent firing by recruiting DCC to the plasma membrane. Together, these findings indicate that normal short-term spatial memory function requires the synergistic actions of acetylcholine and netrin-1.


Assuntos
Acetilcolina , Córtex Entorrinal , Animais , Acetilcolina/farmacologia , Netrina-1 , Prosencéfalo , Colinérgicos , Mamíferos
14.
BMC Biotechnol ; 13: 86, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119185

RESUMO

BACKGROUND: Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. RESULTS: To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. CONCLUSION: We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Bainha de Mielina/química , Polilisina/química , Animais , Células COS , Adesão Celular , Linhagem Celular , Chlorocebus aethiops , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
15.
Neural Plast ; 2013: 853727, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349799

RESUMO

Cells such as astrocytes and radial glia with many densely ramified, fine processes pose particular challenges for the quantification of structural motility. Here we report the development of a method to calculate a motility index for individual cells with complex, dynamic morphologies. This motility index relies on boxcar averaging of the difference images generated by subtraction of images collected at consecutive time points. An image preprocessing step involving 2D projection, edge detection, and dilation of the raw images is first applied in order to binarize the images. The boxcar averaging of difference images diminishes the impact of artifactual pixel fluctuations while accentuating the group-wise changes in pixel values which are more likely to represent real biological movement. Importantly, this provides a value that correlates with mean process elongation and retraction rates without requiring detailed reconstructions of very complex cells. We also demonstrate that additional increases in the sensitivity of the method can be obtained by denoising images using the temporal frequency power spectra, based on the fact that rapid intensity fluctuations over time are mainly due to imaging artifact. The MATLAB programs implementing these motility analysis methods, complete with user-friendly graphical interfaces, have been made publicly available for download.


Assuntos
Movimento Celular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Algoritmos , Animais , Artefatos , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Movimento Celular/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Eletroporação , Proteínas de Fluorescência Verde/genética , Larva , Substâncias Luminescentes , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Xenopus laevis
16.
Neuroscience ; 508: 62-75, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952996

RESUMO

Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.


Assuntos
Mapeamento Encefálico , Encéfalo , Animais , Vias Visuais/fisiologia
17.
Neurophotonics ; 10(4): 044408, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37766925

RESUMO

The increasingly widespread use of calcium imaging to explore the nature of neuronal activity and circuits has unexpectedly revealed the ubiquitous presence and significance of astrocytic activity. Here, we present a brief review of visual system development, placing it in the context of recently identified roles of astrocytes in the modulation of neuronal responses and circuit plasticity, through their responses to sensory stimuli and the release of gliotransmitters.

18.
Sci Rep ; 13(1): 13383, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591903

RESUMO

The N-methyl-D-aspartate type glutamate receptor (NMDAR) is a molecular coincidence detector which converts correlated patterns of neuronal activity into cues for the structural and functional refinement of developing circuits in the brain. D-serine is an endogenous co-agonist of the NMDAR. We investigated the effects of potent enhancement of NMDAR-mediated currents by chronic administration of saturating levels of D-serine on the developing Xenopus retinotectal circuit. Chronic exposure to the NMDAR co-agonist D-serine resulted in structural and functional changes in the optic tectum. In immature tectal neurons, D-serine administration led to more compact and less dynamic tectal dendritic arbors, and increased synapse density. Calcium imaging to examine retinotopy of tectal neurons revealed that animals raised in D-serine had more compact visual receptive fields. These findings provide insight into how the availability of endogenous NMDAR co-agonists like D-serine at glutamatergic synapses can regulate the refinement of circuits in the developing brain.


Assuntos
Neurônios , Colículos Superiores , Animais , Teto do Mesencéfalo , Ácido Glutâmico/farmacologia , Receptores de N-Metil-D-Aspartato , Serina
19.
J Neurosci ; 31(9): 3384-99, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368050

RESUMO

The maturation of retinal ganglion cell (RGC) axon projections in the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC) relies on both molecular and activity-dependent mechanisms. Despite the increasing popularity of the mouse as a mammalian visual system model, little is known in this species about the normal development of individual RGC axon arbors or the role of activity in this process. We used a novel in vivo single RGC labeling technique to quantitatively characterize the elaboration and refinement of RGC axon arbors in the dLGN and SC in wild-type (WT) and ß2-nicotinic acetylcholine receptors mutant (ß2(-/-)) mice, which have perturbed retinal waves, during the developmental period when eye-specific lamination and retinotopic refinement occurs. Our results suggest that eye-specific segregation and retinotopic refinement in WT mice are not the result of refinement of richly exuberant arbors but rather the elaboration of arbors prepositioned in the proper location combined with the elimination of inappropriately targeted sparse branches. We found that retinocollicular arbors mature ∼1 week earlier than retinogeniculate arbors, although RGC axons reach the dLGN and SC at roughly the same age. We also observed striking differences between contralateral and ipsilateral RGC axon arbors in the SC but not in the LGN. These data suggest a strong influence of target specific cues during arbor maturation. In ß2(-/-) mice, we found that retinofugal single axon arbors are well ramified but enlarged, particularly in the SC, indicating that activity-dependent visual map development occurs through the refinement of individual RGC arbors.


Assuntos
Axônios/fisiologia , Receptores Nicotínicos/deficiência , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/fisiologia , Colículos Superiores/crescimento & desenvolvimento , Vias Visuais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/genética , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo
20.
J Neurochem ; 122(1): 147-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22519304

RESUMO

The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Potenciação de Longa Duração/genética , Neurônios/citologia , Densidade Pós-Sináptica/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Reconhecimento Psicológico/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Estimulação Elétrica , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiologia , Neurônios/efeitos dos fármacos , Testes Neuropsicológicos , Técnicas de Patch-Clamp , Densidade Pós-Sináptica/efeitos dos fármacos , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/deficiência , Reconhecimento Psicológico/efeitos dos fármacos , Coloração pela Prata , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA