Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 135(1): 48-60, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24327474

RESUMO

Identifying key mediators of cancer invasion and metastasis is crucial to the development of new and more effective therapies. We previously identified FILamin A Interacting Protein 1-Like (FILIP1L) as an important inhibitor of cell migration and invasion. FILIP1L expression was inversely correlated with the invasive potential of ovarian tumors. In our study, we established an orthotopic ovarian cancer model, wherein FILIP1L expression can be regulated in vivo. Using this model, we observed that expression of FILIP1L in ovarian cancer cells inhibited spontaneous lung metastasis. Experimental lung metastases (established via tail vein injection of cancer cells) as well as the extravasation step of metastasis were not inhibited by FILIP1L, suggesting that FILIP1L inhibits the earlier steps of metastasis such as invasion and intravasation. FILIP1L inhibited matrix metalloproteinase (MMP)-dependent invasion in vivo. MMP3, -7 and -9 were transcriptionally downregulated, and MMP9 protein expression and activity were inhibited in FILIP1L-expressing tumors. Importantly, overexpression of MMP9 compensated for the anti-invasive activity of FILIP1L. Furthermore, our studies suggest that FILIP1L regulates invasion and metastasis by inhibiting components of the WNT signaling pathway. FILIP1L expression reduced the induction of WNT target genes such as MMP3, -7 and -9, and ß-catenin-directed transcriptional activity, suggesting inhibition of the canonical WNT pathway. Nuclear ß-catenin, an indicator of an active canonical WNT pathway, was reduced in FILIP1L-expressing tumors. Overall, these findings suggest that FILIP1L reduces ß-catenin levels, which may lead to the transcriptional downregulation of WNT target genes such as MMPs, resulting in inhibition of metastasis. Modulation of FILIP1L expression has the potential to be a target for cancer therapy.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Via de Sinalização Wnt/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias Ovarianas/patologia , beta Catenina/metabolismo
2.
Oncotarget ; 7(47): 77052-77070, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27776341

RESUMO

Filamin A interacting protein 1-like (FILIP1L) is an inhibitor of the canonical WNT pathway. WNT/ß-catenin signaling and its downstream pathway, epithelial-to-mesenchymal transition (EMT), play a key role in ovarian cancer metastasis and chemoresistance. To study the clinical implications of FILIP1L in regulating the WNT/ß-catenin pathway, the expression of FILIP1L, ß-catenin, SNAIL and SLUG was analyzed by immunohistochemistry on tissue microarrays of 369 ovarian samples ranging from normal to metastatic. In addition, the results were validated in mouse model and in vitro cell culture. In the present study, we demonstrated that FILIP1L expression was inversely correlated with poor prognosis, stage and chemoresistance in ovarian cancer. Notably, low FILIP1L expression was independent negative prognostic factor with respect to overall and disease-free survival. FILIP1L inhibited peritoneal metastases in orthotopic mouse model. FILIP1L knockdown induced chemoresistance in ovarian cancer cells and this phenotype was rescued by simultaneous knockdown of FILIP1L and SLUG, an EMT activator. We also demonstrated that FILIP1L regulates ß-catenin degradation. FILIP1L co-localizes with phospho-ß-catenin and increases phospho-ß-catenin at the centrosomes, destined for proteosomal degradation. Finally, we showed that FILIP1L regulates EMT. Overall, these findings suggest that FILIP1L promotes ß-catenin degradation and suppresses EMT, thereby inhibiting metastases and chemoresistance. Our study provides the first clinical relevance of FILIP1L in human cancer, and suggests that FILIP1L may be a novel prognostic marker for chemotherapy in ovarian cancer patients. Further, the modulation of FILIP1L expression may have the potential to be a target for cancer therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Ovarianas/patologia , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosforilação , Prognóstico , Fatores de Transcrição da Família Snail/metabolismo , Via de Sinalização Wnt
3.
PLoS One ; 8(12): e82620, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340050

RESUMO

Identifying key mediators of cancer cell invasion and metastasis is critical to the development of more effective cancer therapies. We previously identified Filamin A interacting protein 1-like (FILIP1L) as an important inhibitor of cell migration and invasion in ovarian cancer. FILIP1L expression was inversely correlated with the invasive potential of ovarian cancer cell lines and ovarian cancer specimens. We also demonstrated that DNA methylation in the FILIP1L promoter was a mechanism by which FILIP1L was down-regulated in ovarian cancer. In our present study, we tested this observation in other cancer histologies: breast, colon, lung and pancreatic cancers. Both mRNA and protein expression of FILIP1L were down-regulated in these cancer cells compared with their normal epithelial cells. As in ovarian cancer, DNA methylation is a mechanism by which FILIP1L is down-regulated in these cancer histologies. Methylation status of the FILIP1L promoter was inversely correlated with FILIP1L expression. Reduced methylation in the FILIP1L promoter following treatment with a DNA demethylating agent was associated with restoration of FILIP1L expression in these cancer cells. Further, FILIP1L expression was inversely correlated with the invasive potential of these cancer cells. Re-expression of FILIP1L in FILIP1L-low expressing, highly-invasive cancer cell lines resulted in inhibition of cell invasion. Correspondingly, knockdown of FILIP1L in FILIP1L-high expressing, low-invasive cancer cell lines resulted in increase of cell invasion. Overall, these findings suggest that down-regulation of FILIP1L associated with DNA methylation is related with the invasive phenotype in various cancers. Thus, modulation of FILIP1L expression has the potential to be a target for cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Transporte/biossíntese , Neoplasias do Colo/metabolismo , Citocinas/biossíntese , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocinas/genética , Regulação para Baixo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA