Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(4): e2020GL091202, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33785973

RESUMO

The worldwide research initiatives on Corona Virus disease 2019 lockdown effect on air quality agree on pollution reduction, but the most reliable method to pollution reduction quantification is still in debate. In this paper, machine learning models based on a Gradient Boosting Machine algorithm are built to assess the outbreak impact on air quality in Quito, Ecuador. First, the precision of the prediction was evaluated by cross-validation on the four years prelockdown, showing a high accuracy to estimate the real pollution levels. Then, the changes in pollution are quantified. During the full lockdown, air pollution decreased by -53 ± 2%, -45 ± 11%, -30 ± 13%, and -15 ± 9% for NO2, SO2, CO, and PM2.5, respectively. The traffic-busy districts were the most impacted areas of the city. After the transition to the partial relaxation, the concentrations have nearly returned to the levels as before the pandemic. The quantification of pollution drop is supported by an assessment of the prediction confidence.

2.
Sensors (Basel) ; 18(5)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29701690

RESUMO

The enhancement of ubiquitous and pervasive computing brings new perspectives in medical rehabilitation. In that sense, the present study proposes a smart, web-based platform to promote the reeducation of patients after hip replacement surgery. This project focuses on two fundamental aspects in the development of a suitable tele-rehabilitation application, which are: (i) being based on an affordable technology, and (ii) providing the patients with a real-time assessment of the correctness of their movements. A probabilistic approach based on the development and training of ten Hidden Markov Models (HMMs) is used to discriminate in real time the main faults in the execution of the therapeutic exercises. Two experiments are designed to evaluate the precision of the algorithm for classifying movements performed in the laboratory and clinical settings, respectively. A comparative analysis of the data shows that the models are as reliable as the physiotherapists to discriminate and identify the motion errors. The results are discussed in terms of the required setup for a successful application in the field and further implementations to improve the accuracy and usability of the system.

3.
Heliyon ; 10(3): e25134, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322928

RESUMO

Environmental factors have been suspected to influence the propagation and lethality of COVID-19 in the global population. However, most of the studies have been limited to correlation analyses and did not use specific methods to address the dynamic of the causal relationship between the virus and its external drivers. This work focuses on inferring and understanding the causal effect of critical air pollutants and meteorological parameters on COVID-19 by using an Empirical Dynamic Modeling approach called Convergent Cross Mapping. This technique allowed us to identify the time-delayed causation and the sign of interactions. Considering its remarkable urban environment and mortality rate during the pandemic, Quito, Ecuador, was chosen as a case study. Our results show that both urban air pollution and meteorology have a causal impact on COVID-19. Even if the strength and the sign of the causality vary over time, a general trend can be drawn. NO2, SO2, CO and PM2.5 have a positive causation for COVID-19 infections (ρ > 0.35 and ∂ > 9.1). Contrary to current knowledge, this study shows a rapid effect of pollution on COVID-19 cases (1 < lag days <24) and a negative impact of O3 on COVID-19-related deaths (ρ = 0.53 and ∂ = -0.3). Regarding the meteorology, temperature (ρ = 0.24 and ∂ = -0.4) and wind speed (ρ = 0.34 and ∂ = -3.9) tend to mitigate the epidemiological consequences of SARS-CoV-2, whereas relative humidity seems to increase the excess deaths (ρ = 0.4 and ∂ = 0.05). A causal network is proposed to synthesize the interactions between the studied variables and to provide a simple model to support the management of coronavirus outbreaks.

4.
Front Big Data ; 5: 842455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445191

RESUMO

Weather Normalized Models (WNMs) are modeling methods used for assessing air contaminants under a business-as-usual (BAU) assumption. Therefore, WNMs are used to assess the impact of many events on urban pollution. Recently, different approaches have been implemented to develop WNMs and quantify the lockdown effects of COVID-19 on air quality, including Machine Learning (ML). However, more advanced methods, such as Deep Learning (DL), have never been applied for developing WNMs. In this study, we proposed WNMs based on DL algorithms, aiming to test five DL architectures and compare their performances to a recent ML approach, namely Gradient Boosting Machine (GBM). The concentrations of five air pollutants (CO, NO2, PM2.5, SO2, and O3) are studied in the city of Quito, Ecuador. The results show that Long-Short Term Memory (LSTM) and Bidirectional Recurrent Neural Network (BiRNN) outperform the other algorithms and, consequently, are recommended as appropriate WNMs to quantify the effects of the lockdowns on air pollution. Furthermore, examining the variable importance in the LSTM and BiRNN models, we identify that the most relevant temporal and meteorological features for predicting air quality are Hours (time of day), Index (1 is the first collected data and increases by one after each instance), Julian Day (day of the year), Relative Humidity, Wind Speed, and Solar Radiation. During the full lockdown, the concentration of most pollutants has decreased drastically: -48.75%, for CO, -45.76%, for SO2, -42.17%, for PM2.5, and -63.98%, for NO2. The reduction of this latter gas has induced an increase of O3 by +26.54%.

5.
Sci Rep ; 11(1): 17591, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475460

RESUMO

Particulate matter (PM) accounts for millions of premature deaths in the human population every year. Due to social and economic inequality, growing human dissatisfaction manifests in waves of strikes and protests all over the world, causing paralysis of institutions, services and circulation of transport. In this study, we aim to investigate air quality in Ecuador during the national protest of 2019, by studying the evolution of PM2.5 (PM ≤ 2.5 µm) concentrations in Ecuador and its capital city Quito using ground based and satellite data. Apart from analyzing the PM2.5 evolution over time to trace the pollution changes, we employ machine learning techniques to estimate these changes relative to the business-as-usual pollution scenario. In addition, we present a chemical analysis of plant samples from an urban park housing the strike. Positive impact on regional air quality was detected for Ecuador, and an overall - 10.75 ± 17.74% reduction of particulate pollution in the capital during the protest. However, barricade burning PM peaks may contribute to a release of harmful heavy metals (tire manufacture components such as Co, Cr, Zn, Al, Fe, Pb, Mg, Ba and Cu), which might be of short- and long-term health concerns.

6.
Sci Rep ; 10(1): 17049, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046746

RESUMO

Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017-2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.

7.
Appl Bionics Biomech ; 2019: 8575607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611928

RESUMO

Daily activities are characterized by an increasing interaction with smart machines that present a certain level of autonomy. However, the intelligence of such electronic devices is not always transparent for the end user. This study is aimed at assessing the quality of the remote control of a mobile robot whether the artefact exhibits a human-like behavior or not. The bioinspired behavior implemented in the robot is the well-described two-thirds power law. The performance of participants who teleoperate the semiautonomous vehicle implementing the biological law is compared to a manual and nonbiological mode of control. The results show that the time required to complete the path and the number of collisions with obstacles are significantly lower in the biological condition than in the two other conditions. Also, the highest percentage of occurrences of curvilinear or smooth trajectories are obtained when the steering is assisted by an integration of the power law in the robot's way of working. This advanced analysis of the performance based on the naturalness of the movement kinematics provides a refined evaluation of the quality of the Human-Machine Interaction (HMI). This finding is consistent with the hypothesis of a relationship between the power law and jerk minimization. In addition, the outcome of this study supports the theory of a CNS origin of the power law. The discussion addresses the implications of the anthropocentric approach to enhance the HMI.

8.
Rehabil Res Pract ; 2019: 5360924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956821

RESUMO

OBJECTIVE: To analyse the effect of the manual ischemic compression (IC) on the upper limb motor performance (MP) in patients with LTrPs. MATERIALS AND METHODS: A quasiexperimental study was performed in twenty subjects allocated to either patients group with LTrPs (PG, n=10) or healthy group with no symptoms (HG, n=10). Subjective pain and linear MP (movement time and Fitts' Law) were assessed before and after a linear tapping task. Data were analysed with mixed factorial ANOVA for intergroup linear motor performance differences and dependent t-student test for intragroup pain differences. RESULTS: PG had a linear MP lower than the HG before treatment (p < 0.05). After IC, the PG showed a significant decrease of pain (4.07 ± 1.91 p < 0.001). Furthermore, the movement time (15.70 ± 2.05 p < 0.001) and the Fitts' Law coefficient (0.80 ± 0.53 p < 0.001) were significantly reduced. However, one IC session did not allow the PG to get the same MP than the HG (p < 0.05). CONCLUSION: The results suggest the IC effectiveness on pain and MP impairment in subjects with LTrPs. However, the MP of these patients is only partially improved after the IC application.

11.
Front Psychol ; 3: 239, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22798955

RESUMO

Studies on the direction of a driver's gaze while taking a bend show that the individual looks toward the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street turns a corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behavior, executes an internal model of the trajectory that anticipates the completion of the path, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to manipulate in an easy and precise way the temporal organization of the visuo-locomotor coupling. The results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables (i) a significant smoothness of the trajectory and (ii) a velocity-curvature relationship that follows the "2/3 Power Law." These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the formation of the path seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA