Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Biol ; 21(1): 252, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950228

RESUMO

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Assuntos
Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efeitos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/prevenção & controle , Neurônios Dopaminérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Açúcares/efeitos adversos , Açúcares/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Glucose/metabolismo , Modelos Animais de Doenças
2.
Environ Sci Technol ; 56(2): 1113-1124, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35038872

RESUMO

Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Prata/farmacologia
3.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261893

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. METHODS: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). RESULTS: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception-pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. CONCLUSIONS: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dinâmica Mitocondrial , Doença de Parkinson/genética , Tolerância a Radiação/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos da radiação , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Mitofagia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversos
4.
Environ Sci Technol ; 51(1): 560-569, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27785914

RESUMO

Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p < 0.01), substantial time savings for primary cooks, a 72% reduction in PM2.5, a 78% reduction in PAH levels, and significant reductions in water-soluble organic carbon and nitrogen (p < 0.01) in household air samples. ICS use was associated with reduced time in the hospital with acute respiratory infection and reduced diastolic blood pressure but not with other health measurements. We find many significant gains from promoting rural biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.


Assuntos
Poluição do Ar em Ambientes Fechados , Biocombustíveis , Poluição do Ar , Mudança Climática , Culinária , Estudos Transversais , Humanos , Índia
5.
Nucleic Acids Res ; 40(16): 7916-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718972

RESUMO

Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.


Assuntos
Autofagia , Dano ao DNA , DNA Mitocondrial/metabolismo , Dinâmica Mitocondrial , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/efeitos da radiação , Replicação do DNA , DNA Mitocondrial/biossíntese , DNA Mitocondrial/efeitos da radiação , Larva/genética , Larva/efeitos da radiação , Mitocôndrias/ultraestrutura , Raios Ultravioleta/efeitos adversos
6.
bioRxiv ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38979262

RESUMO

Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.

8.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664688

RESUMO

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Assuntos
Caenorhabditis elegans , DNA Mitocondrial , Mitocôndrias , Caracteres Sexuais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Feminino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos
9.
J Biochem Mol Toxicol ; 27(1): 28-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132756

RESUMO

Mitochondrial DNA (mtDNA) is more susceptible than nuclear DNA to helix-distorting damage via exposure to environmental genotoxins, partially due to a lack of nucleotide excision repair. Thus, this damage is irreparable and persistent in mtDNA in the short term. We recently found that helix-distorting mtDNA damage induced by ultraviolet C radiation (UVC) is gradually removed in Caenorhabditis elegans and that removal is dependent upon autophagy and mitochondrial dynamics. We here report the effects of UVC exposure on mitophagy, mitochondrial morphology, and indicators of mitochondrial function in mammalian cells. Exposure to UVC induced autophagy within 24 h; nonetheless, significant mitochondrial degradation was not observed until 72 h post exposure. Mitochondrial mass, morphology, and function were not significantly altered. These data further support the idea that persistent mtDNA damage is removed by autophagy and also suggest a powerful compensatory capacity for dealing with mtDNA damage.


Assuntos
Autofagia/efeitos da radiação , Dano ao DNA/efeitos da radiação , DNA Mitocondrial/efeitos da radiação , Fibroblastos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Autofagia/genética , Células Cultivadas , DNA Mitocondrial/genética , Fibroblastos/citologia , Humanos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Raios Ultravioleta
10.
PLoS One ; 18(11): e0287412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37910447

RESUMO

Gulf War Illness (GWI) is a major health problem for approximately 250,000 Gulf War (GW) veterans, but the etiology of GWI is unclear. We hypothesized that mitochondrial dysfunction is an important contributor to GWI, based on the similarity of some GWI symptoms to those occurring in some mitochondrial diseases; the plausibility that certain pollutants to which GW veterans were exposed affect mitochondria; mitochondrial effects observed in studies in laboratory models of GWI; and previous evidence of mitochondrial outcomes in studies in GW veterans. A primary role of mitochondria is generation of energy via oxidative phosphorylation. However, direct assessment of mitochondrial respiration, reflecting oxidative phosphorylation, has not been carried out in veterans with GWI. In this case-control observational study, we tested multiple measures of mitochondrial function and integrity in a cohort of 114 GW veterans, 80 with and 34 without GWI as assessed by the Kansas definition. In circulating white blood cells, we analyzed multiple measures of mitochondrial respiration and extracellular acidification, a proxy for non-aerobic energy generation; mitochondrial DNA (mtDNA) copy number; mtDNA damage; and nuclear DNA damage. We also collected detailed survey data on demographics; deployment; self-reported exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents; and current biometrics, health and activity levels. We observed a 9% increase in mtDNA content in blood in veterans with GWI, but did not detect differences in DNA damage. Basal and ATP-linked oxygen consumption were respectively 42% and 47% higher in veterans without GWI, after adjustment for mtDNA amount. We did not find evidence for a compensatory increase in anaerobic energy generation: extracellular acidification was also lower in GWI (12% lower at baseline). A subset of 27 and 26 veterans returned for second and third visits, allowing us to measure stability of mitochondrial parameters over time. mtDNA CN, mtDNA damage, ATP-linked OCR, and spare respiratory capacity were moderately replicable over time, with intraclass correlation coefficients of 0.43, 0.44, 0.50, and 0.57, respectively. Other measures showed higher visit-to-visit variability. Many measurements showed lower replicability over time among veterans with GWI compared to veterans without GWI. Finally, we found a strong association between recalled exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents and GWI (p < 0.01, p < 0.01, and p < 0.0001, respectively). Our results demonstrate decreased mitochondrial respiratory function as well as decreased glycolytic activity, both of which are consistent with decreased energy availability, in peripheral blood mononuclear cells in veterans with GWI.


Assuntos
Síndrome do Golfo Pérsico , Praguicidas , Veteranos , Humanos , Trifosfato de Adenosina , Armas Biológicas , DNA Mitocondrial , Metabolismo Energético , Guerra do Golfo , Leucócitos Mononucleares , Brometo de Piridostigmina , Estudos de Casos e Controles
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA