Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Inform ; 189: 105522, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852288

RESUMO

BACKGROUND: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using artificial intelligence. However, only two papers have dealt with complex BI-RADS classifications. PURPOSE: This study addresses the automatic classification of breast lesions into binary classes (benign vs. malignant) and multiple BI-RADS classes based on a single ultrasonographic image. Achieving this task should reduce the subjectivity of an individual operator's assessment. MATERIALS AND METHODS: Automatic image segmentation methods (PraNet, CaraNet and FCBFormer) adapted to the specific segmentation task were investigated using the U-Net model as a reference. A new classification method was developed using an ensemble of selected segmentation approaches. All experiments were performed on publicly available BUS B, OASBUD, BUSI and private datasets. RESULTS: FCBFormer achieved the best outcomes for the segmentation task with intersection over union metric values of 0.81, 0.80 and 0.73 and Dice values of 0.89, 0.87 and 0.82, respectively, for the BUS B, BUSI and OASBUD datasets. Through a series of experiments, we determined that adding an extra 30-pixel margin to the segmentation mask counteracts the potential errors introduced by the segmentation algorithm. An assembly of the full image classifier, bounding box classifier and masked image classifier was the most accurate for binary classification and had the best accuracy (ACC; 0.908), F1 (0.846) and area under the receiver operating characteristics curve (AUROC; 0.871) in the BUS B and ACC (0.982), F1 (0.984) and AUROC (0.998) in the UCC BUS datasets, outperforming each classifier used separately. It was also the most effective for BI-RADS classification, with ACC of 0.953, F1 of 0.920 and AUROC of 0.986 in UCC BUS. Hard voting was the most effective method for dichotomous classification. For the multi-class BI-RADS classification, the soft voting approach was employed. CONCLUSIONS: The proposed new classification approach with an ensemble of segmentation and classification approaches proved more accurate than most published results for binary and multi-class BI-RADS classifications.

2.
Cancers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37345041

RESUMO

Breast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private dataset with 1174 non-cancer and 794 cancer images labelled at the image level with pathological ground truth confirmation. We used feature extractors (ResNet-18, ResNet-34, ResNet-50 and EfficientNet-B0) pre-trained on ImageNet. The best results were achieved with multimodal-view classification using both CC and MLO images simultaneously, resized by half, with a patch size of 224 px and an overlap of 0.25. It resulted in AUC-ROC = 0.896 ± 0.017, F1-score 81.8 ± 3.2, accuracy 81.6 ± 3.2, precision 82.4 ± 3.3, and recall 81.6 ± 3.2. Evaluation with the Chinese Mammography Database, with 5-fold cross-validation, patient-wise breakdowns, and transfer learning, resulted in AUC-ROC 0.848 ± 0.015, F1-score 78.6 ± 2.0, accuracy 78.4 ± 1.9, precision 78.8 ± 2.0, and recall 78.4 ± 1.9. The CLAM algorithm's attentional maps indicate the features most relevant to the algorithm in the images. Our approach was more effective than in many other studies, allowing for some explainability and identifying erroneous predictions based on the wrong premises.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA