Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biomech Eng ; 144(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656789

RESUMO

Convection-enhanced delivery (CED) has been extensively studied for drug delivery to the brain due to its inherent ability to bypass the blood-brain barrier. Unfortunately, CED has also been shown to inadequately distribute therapeutic agents over a large enough targeted tissue volume to be clinically beneficial. In this study, we explore the use of constant pressure infusions in addition to controlled catheter movement as a means to increase volume dispersed (Vd) in an agarose gel brain tissue phantom. Constant flow rate and constant pressure infusions were conducted with a stationary catheter, a catheter retracting at a rate of 0.25 mm/min, and a catheter retracting at a rate of 0.5 mm/min. The 0.25 mm/min and 0.5 mm/min retracting constant pressure catheters resulted in significantly larger Vd compared to any other group, with a 105% increase and a 155% increase compared to the stationary constant flow rate catheter, respectively. These same constant pressure retracting infusions resulted in a 42% and 45% increase in Vd compared to their constant flow rate counterparts. Using constant pressure infusions coupled with controlled catheter movement appears to have a beneficial effect on Vd in agarose gel. Furthermore, constant pressure infusions reveal the fundamental limitation of flow-driven infusions in both controlled catheter movement protocols as well as in stationary protocols where maximum infusion volume can never be reliably obtained.


Assuntos
Catéteres , Convecção , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Sefarose
2.
Lasers Surg Med ; 47(6): 495-502, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041069

RESUMO

Near-infrared Spectroscopy (NIRS) is a broadly utilized technology with many emerging applications including clinical diagnostics, sports medicine, and functional neuroimaging, to name a few. For functional brain imaging NIR light is delivered at multiple wavelengths through the scalp and skull to the brain to enable spatial oximetry measurements. Dynamic changes in brain oxygenation are highly correlated with neural stimulation, activation, and function. Unfortunately, NIRS is currently limited by its low spatial resolution, shallow penetration depth, and, perhaps most importantly, signal corruption due to light interactions with superficial non-target tissues such as scalp and skull. In response to these issues, we have combined the non-invasive and rapidly reversible method of mechanical tissue optical clearing (MOC) with a commercially available NIRS system. MOC utilizes a compressive loading force on tissue, causing the lateral displacement of blood and water, while simultaneously thinning the tissue. A MOC-NIRS Breath Hold Test displayed a ∼3.5-fold decrease in the time-averaged standard deviation between channels, consequentially promoting greater channel agreement. A Skin Pinch Test was implemented to negate brain and muscle activity from affecting the recorded signal. These results displayed a 2.5-3.0 fold increase in raw signal amplitude. Existing NIRS instrumentation has been further integrated within a custom helmet device to provide a uniform force distribution across the NIRS sensor array. These results showed a gradual decrease in time-averaged standard deviation among channels with an increase in applied pressure. Through these experiments, and the development of the MOC-NIRS helmet device, MOC appears to provide enhancement of NIRS technology beyond its current limitations.


Assuntos
Neuroimagem Funcional/métodos , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Suspensão da Respiração , Neuroimagem Funcional/instrumentação , Humanos , Imagem Óptica/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação
3.
J Biomech Eng ; 136(2): 021003, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24763615

RESUMO

Single-walled carbon nanohorns (SWNHs) have significant potential for use in photothermal therapies due to their capability to absorb near infrared light and deposit heat. Additionally, their extensive relative surface area and volume makes them ideal drug delivery vehicles. Novel multimodal treatments are envisioned in which laser excitation can be utilized in combination with chemotherapeutic-SWNH conjugates to thermally enhance the therapeutic efficacy of the transported drug. Although mild hyperthermia (41-43 °C) has been shown to increase cellular uptake of drugs such as cisplatin (CDDP) leading to thermal enhancement, studies on the effects of hyperthermia on cisplatin loaded nanoparticles are currently limited. After using a carbodiimide chemical reaction to attach CDDP to the exterior surface of SWNHs and nitric acid to incorporate CDDP in the interior volume, we determined the effects of mild hyperthermia on the efficacy of the CDDP-SWNH conjugates. Rat bladder transitional carcinoma cells were exposed to free CDDP or one of two CDDP-SWNH conjugates in vitro at 37 °C and 42 °C with the half maximal inhibitory concentration (IC50) for each treatment. The in vitro results demonstrate that unlike free CDDP, CDDP-SWNH conjugates do not exhibit thermal enhancement at 42 °C. An increase in viability of 16% and 7% was measured when cells were exposed at 42 deg compared to 37 deg for the surface attached and volume loaded CDDP-SWNH conjugates, respectively. Flow cytometry and confocal microscopy showed a decreased uptake of CDDP-SWNH conjugates at 42 °C compared to 37 °C, revealing the importance of nanoparticle uptake on the CDDP-SWNH conjugate's efficacy, particularly when hyperthermia is used as an adjuvant, and demonstrates the effect of particle size on uptake during mild hyperthermia. The uptake and drug release studies elucidated the difference in viability seen in the drug efficacy studies at different temperatures. We speculate that the disparity in thermal enhancement efficacy observed for free drug compared to the drug SWNH conjugates is due to their intrinsic size differences and, therefore, their mode of cellular uptake: diffusion or endocytosis. These experiments indicate the importance of tuning properties of nanoparticle-drug conjugates to maximize cellular uptake to ensure thermal enhancement in nanoparticle mediated photothermal-chemotherapy treatments.


Assuntos
Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/terapia , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Hipertermia Induzida/métodos , Nanoconjugados/administração & dosagem , Nanotubos de Carbono/química , Animais , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada/métodos , Nanoconjugados/química , Ratos , Distribuição Tecidual
4.
Nanotechnology ; 24(27): 275102, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23780336

RESUMO

A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm(-2) for 10-80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm(3) and 13 mm(3) respectively to 44.5 mm(3) and 44.3 mm(3) as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols.


Assuntos
Carbono/uso terapêutico , Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Alginatos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Diagnóstico por Imagem/métodos , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/uso terapêutico , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Imagens de Fantasmas , Temperatura
5.
Lasers Surg Med ; 45(3): 167-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23390044

RESUMO

BACKGROUND AND OBJECTIVES: The fiberoptic microneedle device (FMD) seeks to leverage advantages of both laser-induced thermal therapy (LITT) and convection-enhanced delivery (CED) to increase volumetric dispersal of locally infused chemotherapeutics through sub-lethal photothermal heat generation. This study focused on determination of photothermal damage thresholds with 1,064 nm light delivered through the FMD into in vivo rat models. MATERIALS AND METHODS: FMDs capable of co-delivering laser energy and fluid agents were fabricated through a novel off-center splicing technique involving fusion of a multimode fiberoptic to light-guiding capillary tubing. FMDs were positioned at a depth of 2.5 mm within the cerebrum of male rats with fluoroptic temperature probes placed within 1 mm of the FMD tip. Irradiation (without fluid infusion) was conducted at laser powers of 0 (sham), 100, 200, 500, or 750 mW. Evans blue-serum albumin conjugated complex solution (EBA) and laser energy co-delivery were performed in a second set of preliminary experiments. RESULTS: Maximum, steady-state temperatures of 38.7 ± 1.6 and 42.0 ± 0.9 °C were measured for the 100 and 200 mW experimental groups, respectively. Histological investigation demonstrated needle insertion damage alone for sham and 100 mW irradiations. Photothermal damage was detected at 200 mW, although observable thermal damage was limited to a small penumbra of cerebral cortical microcavitation and necrosis that immediately surrounded the region of FMD insertion. Co-delivery of EBA and laser energy presented increased volumetric dispersal relative to infusion-only controls. CONCLUSION: Fluoroptic temperature sensing and histopathological assessments demonstrated that a laser power of 100 mW results in sub-lethal brain hyperthermia, and the optimum, sub-lethal target energy range is likely 100-200 mW. The preliminary FMD-CED experiments confirmed the feasibility of augmenting fluid dispersal using slight photothermal heat generation, demonstrating the FMD's potential as a way to increase the efficacy of CED in treating MG.


Assuntos
Cérebro/efeitos da radiação , Hipertermia Induzida/instrumentação , Lasers , Agulhas , Fibras Ópticas , Animais , Temperatura Corporal , Cérebro/efeitos dos fármacos , Cérebro/patologia , Azul Evans/administração & dosagem , Azul Evans/farmacologia , Hipertermia Induzida/métodos , Masculino , Necrose , Ratos , Ratos Endogâmicos F344 , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacologia
6.
Lasers Surg Med ; 45(7): 418-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861185

RESUMO

BACKGROUND AND OBJECTIVES: A fiberoptic microneedle device (FMD) was designed and fabricated for the purpose of enhancing the volumetric dispersal of macromolecules delivered to the brain through convection-enhanced delivery (CED) by concurrent delivery of sub-lethal photothermal hyperthermia. This study's objective was to demonstrate enhanced dispersal of fluid tracer molecules through co-delivery of 1,064 nm laser energy in an in vivo rodent model. MATERIALS AND METHODS: FMDs capable of co-delivering fluids and laser energy through a single light-guiding capillary tube were fabricated. FMDs were stereotactically inserted symmetrically into both cerebral hemispheres of 16 anesthetized rats to a depth of 1.5 mm. Laser irradiation (1,064 nm) at 0 (control), 100, and 200 mW was administered concurrently with CED infusions of liposomal rhodamine (LR) or gadolinium-Evans blue-serum albumin conjugated complex (Gd-EBA) at a flow rate of 0.1 µl/min for 1 hour. Line pressures were monitored during the infusions. Rodents were sacrificed immediately following infusion and their brains were harvested, frozen, and serially cryosectioned for histopathologic and volumetric analyses. RESULTS: Analysis by ANOVA methods demonstrated that co-delivery enhanced volumetric dispersal significantly, with measured volumes of 15.8 ± 0.6 mm(3) for 100 mW compared to 10.0 ± 0.4 mm(3) for its fluid only control and 18.0 ± 0.3 mm(3) for 200 mW compared to 10.3 ± 0.7 mm(3) for its fluid only control. Brains treated with 200 mW co-delivery exhibited thermal lesions, while 100 mW co-deliveries were associated with preservation of brain cytoarchitecture. CONCLUSION: Both lethal and sub-lethal photothermal hyperthermia substantially increase the rate of volumetric dispersal in a 1 hour CED infusion. This suggests that the FMD co-delivery method could reduce infusion times and the number of catheter insertions into the brain during CED procedures.


Assuntos
Corantes/farmacocinética , Convecção , Sistemas de Liberação de Medicamentos/instrumentação , Hipertermia Induzida/métodos , Lasers , Agulhas , Fibras Ópticas , Animais , Cérebro , Corantes/administração & dosagem , Craniotomia , Sistemas de Liberação de Medicamentos/métodos , Azul Evans/administração & dosagem , Azul Evans/farmacocinética , Gadolínio/administração & dosagem , Gadolínio/farmacocinética , Hipertermia Induzida/instrumentação , Infusões Intraventriculares , Lipossomos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Endogâmicos F344 , Rodaminas/administração & dosagem , Rodaminas/farmacocinética , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacocinética
7.
Lasers Surg Med ; 45(6): 391-400, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23740768

RESUMO

BACKGROUND AND OBJECTIVE: Regenerative medicine involves the bioengineering of a functional tissue or organ by seeding living cells on a biodegradable scaffold cultured in a bioreactor. A major barrier to creating functional tissues, however, has been the inability to monitor the dynamic and complex process of scaffold maturation in real time, making control and optimization extremely difficult. Current methods to assess maturation of bioengineered constructs, such as histology or organ bath physiology, are sample-destructive. Optical coherence tomography (OCT) has recently emerged as a key modality for structural assessment of native blood vessels as well as engineered vessel mimics. The objective of this study was to monitor and assess in real time the development of a bioengineered blood vessel using a novel approach of combining both free-space and catheter-based OCT imaging in a new quartz-walled bioreactor. Development of the blood vessel was characterized by changes in thickness and scattering coefficient over a 30-day period. MATERIALS AND METHODS: We constructed a novel blood vessel bioreactor utilizing a rotating cylindrical quartz cuvette permitting free-space OCT imaging of an installed vessel's outer surface. A vascular endoscopic OCT catheter was used to image the lumen of the vessels. The quartz cuvette permits 360 degree, free-space OCT imaging of the blood vessel. Bioengineered blood vessels were fabricated using biodegradable polymers (15% PCL/collagen, ∼300 µm thick) and seeded with CH3 10t1/2 mesenchymal stem cells. A swept-source OCT imaging system comprised of a 20 kHz tunable laser (Santec HSL2000) with 1,300 nm central wavelength and 110 nm FWHM bandwidth was used to assess the vessels. OCT images were obtained at days 1, 4, 7, 14, 21, and 30. Free-space (exterior surface) OCT images were co-registered with endoscopic OCT images to determine the vessel wall thickness. DAPI-stained histological sections, acquired at same time point, were evaluated to quantify wall thickness and cellular infiltration. Non-linear curve fitting of free-space OCT data to the extended Huygen-Fresnel model was performed to determine optical scattering properties. RESULTS: Vessel wall thickness increased from 435 ± 15 µm to 610 ± 27 µm and Vessel scattering coefficient increased from 3.73 ± 0.32 cm⁻¹ to 5.74 ± 0.06 cm⁻¹ over 30 days. Histological studies showed cell migration from the scaffold surface toward the lumen and cell proliferation over the same time course. The imaging procedure did not have any significant impact on scaffold dimensions, cell migration, or cell proliferation. CONCLUSIONS: This study suggests that combination of free-space and catheter-based OCT for blood vessel imaging provides accurate structural information of the developing blood vessel. We determined that free-space OCT images could be co-registered with catheter-based OCT images to monitor structural features such as wall thickness or delamination of the developing tissue-engineered blood vessel within a bioreactor. Structural parameters and optical properties obtained from OCT imaging correlate with histological sections of the blood vessel and could potentially be used as markers to non-invasively and non-destructively assess regeneration of engineered tissues in real time.


Assuntos
Reatores Biológicos , Vasos Sanguíneos , Engenharia Tecidual/métodos , Alicerces Teciduais , Tomografia de Coerência Óptica/métodos , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/fisiologia , Catéteres , Movimento Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais , Quartzo , Engenharia Tecidual/instrumentação , Tomografia de Coerência Óptica/instrumentação
8.
Lasers Med Sci ; 28(4): 1143-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23053245

RESUMO

Laser-based photothermal therapies for urothelial cell carcinoma (UCC) are limited to thermal ablation of superficial tumors, as treatment of invasive lesions is hampered by shallow light penetration in bladder tissue at commonly used therapeutic wavelengths. This study evaluates the utilization of sharp, silica, fiberoptic microneedle devices (FMDs) to deliver single-walled carbon nanohorns (SWNHs) serving as exogenous chromophores in conjunction with a 1,064-nm laser to amplify thermal treatment doses in a spatially controlled manner. Experiments were conducted to determine the lateral and depth dispersal of SWNHs in aqueous solution (0.05 mg/mL) infused through FMDs into the wall of healthy, inflated, ex vivo porcine bladders. SWNH-perfused bladder regions were irradiated with a free-space, CW, 1,064-nm laser in order to determine the SWNH efficacy as exogenous chromophores within the organ. SWNHs infused at a rate of 50 µL/min resulted in an average lateral expansion rate of 0.36 ± 0.08 cm(2)/min. Infused SWNHs dispersal depth was limited to the urothelium and muscular propria for 50 µL/min infusions of 10 min or less, but dispersed through the entire thickness after a 15-min infusion period. Irradiation of SWNH-perfused bladder tissue with 1,064 nm laser light at 0.95 W/cm(2) over 40 s exhibited a maximum increase of approximately 19 °C compared with an increase of approximately 3 °C in a non-perfused control. The results indicate that these silica FMDs can successfully penetrate into the bladder wall to rapidly distribute SWNHs with some degree of lateral and depth control and that SWNHs may be a viable exogenous chromophore for photothermal amplification of laser-based UCC treatments.


Assuntos
Hipertermia Induzida/instrumentação , Nanotubos de Carbono , Fibras Ópticas , Bexiga Urinária/efeitos da radiação , Bexiga Urinária/cirurgia , Animais , Carcinoma de Células de Transição/terapia , Desenho de Equipamento , Feminino , Humanos , Lasers de Estado Sólido/uso terapêutico , Masculino , Nanotubos de Carbono/efeitos da radiação , Sus scrofa , Neoplasias da Bexiga Urinária/terapia
9.
Lasers Surg Med ; 44(5): 421-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22510991

RESUMO

BACKGROUND AND OBJECTIVES: Microneedles made from silica fiberoptics permit transmission and collection of light, which is an important functional advantage over metal or silicon microneedles. This added functionality may enhance or even enable new percutaneous light-based clinical diagnostic and therapeutic procedures. Micron-diameter fiberoptic microneedles, created from solid fibers capable of light emission and detection, are designed to penetrate several millimeters into tissue while minimizing tissue invasion and disruption. The mechanical strength (critical buckling force) of high aspect ratio (length to diameter) microneedles is a potential problem, which has motivated our invention of an elastomeric support device. In this study, we have tested our hypothesis that embedding the microneedles in an elastomeric support medium may increase microneedle critical buckling force. MATERIALS AND METHODS: The critical buckling force of silica microneedles with 55, 70, and 110 µm diameters and 3 mm lengths were measured with and without a surrounding elastomeric support (PDMS, polydimethylsiloxane). These experimental results were compared to theoretical calculations generated by the Rayleigh-Ritz buckling model. The insertion force required to penetrate ex vivo porcine skin was measured for microneedles with 55 and 70 µm diameters. RESULTS: Use of the PDMS support increased critical buckling force for microneedles of 55, 70, and 110 µm diameters by an average of 610%, 290%, and 33%, respectively. Theoretical calculations by the Rayleigh-Ritz model consistently overestimated the experimentally determined strengthening, but correlated highly with the greater enhancement offered to thinner microneedles. Aided by mechanical strengthening, microneedles 55 µm in diameter were able to repeatedly penetrate. CONCLUSIONS: The critical buckling force of microneedles can be increased substantially to allow extremely high-aspect ratio microneedles, 55-110 µm in diameter and 3 mm in length, to penetrate ex vivo porcine skin. By this strengthening method, the safety and reliability of microneedles in potential clinical applications can be considerably enhanced.


Assuntos
Dimetilpolisiloxanos , Agulhas , Fibras Ópticas , Dióxido de Silício , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Técnicas In Vitro , Suínos , Suporte de Carga
10.
Lasers Surg Med ; 44(4): 303-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22419501

RESUMO

BACKGROUND AND OBJECTIVES: Mechanical indentation has been shown to increase light transmission through turbid tissue. In this study, we investigated the effects of localized indentation on the optical properties of ex vivo porcine skin specimens by dynamically monitoring diffuse reflectance spectra, light transmission, and applied load while controlling tissue thickness. STUDY DESIGN/METHODS: A custom-built diffuse reflectance spectroscopy (DRS) system was used to capture diffuse reflectance spectra from tissue specimens undergoing indentation. The DRS probe was designed to perform both optical sensing and tissue indentation. A mechanical load frame was used to dynamically control probe displacement and resultant specimen thickness change while recording applied load. Diffuse reflectance spectra, as well as light transmission at 630 nm, were recorded during stress relaxation tests where tissue specimens were displaced to and held at a final thickness. Tissue optical properties were extracted from reflectance spectra using a previously established look-up table (LUT) approach. RESULTS: Indentation increased light transmission through tissue during linear displacement, and continued to increase transmission during subsequent stress relaxation at constant tissue thickness. The magnitude of relative transmission increases was shown to be a function of bulk tissue compressive strain (relative thickness change). Reduced scattering coefficients calculated from the LUT at 630 nm decreased during stress relaxation, with the relative decrease in scattering also depending strongly on tissue compressive strain. Reduced scattering coefficients decreased by 12.0 ± 4.7% at 0.44 ± 0.022 compressive strain, and reduced by 35.6 ± 1.3% at 0.71 ± 0.01 compressive strain. CONCLUSION: DRS can be used to capture transient changes in intrinsic tissue optical properties during mechanical loading. Mechanical indentation modifies tissue optical properties and may be harnessed as a minimally-invasive optical clearing technique to improve optical diagnostics and therapeutics.


Assuntos
Fenômenos Ópticos , Pressão , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Animais , Tecnologia de Fibra Óptica , Análise Espectral/instrumentação , Análise Espectral/métodos , Suínos
11.
Int J Numer Method Biomed Eng ; 38(9): e3635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35763587

RESUMO

Convection-enhanced delivery (CED) is an investigational method for delivering therapeutics directly to the brain for the treatment of glioblastoma. However, it has not become a common clinical therapy due to an inability of CED treatments to deliver therapeutics in a large enough tissue volume to fully saturate the target region. We have recently shown that the combination of controlled catheter movement and constant pressure infusions can be used to significantly increase volume dispersed (Vd ) in an agarose gel brain tissue phantom. In the present study, we develop a computational model to predict Vd achieved by various retraction rates with both constant pressure and constant flow rate infusions. An increase in Vd is achieved with any movement rate, but increase in Vd between successive movement rates drops off at rates above 0.3-0.35 mm/min. Finally, we found that infusions with retraction result in a more even distribution in concentration level compared to the stationary catheter, suggesting a potential increased ability for moving catheters to have a therapeutic impact regardless of the required therapeutic concentration level.


Assuntos
Convecção , Sistemas de Liberação de Medicamentos , Encéfalo , Catéteres , Sistemas de Liberação de Medicamentos/métodos , Análise de Elementos Finitos
12.
J Med Device ; 16(4): 041014, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353365

RESUMO

Convection-enhanced delivery (CED) is a drug delivery technique used to deliver therapeutics directly to the brain and is a continually evolving technique to treat glioblastoma. Early versions of CED have proven to result in inadequate drug volume dispersed (Vd), increasing the likelihood of tumor recurrence. Fiber optic microneedle devices (FMDs) with the ability to deliver fluid and thermal energy simultaneously have shown an ability to increase Vd, but FMDs have historically had low light transmission efficiency. In this study, we present a new fabrication method, solid fiber inside capillary (SFIC) FMD, and a modified fusion splicing (FS) method with the goal of increasing light delivery efficiency. The modified FS FMD resulted in an increase in light transmission efficiency between 49% and 173% compared to previous prototypes. However, the FS FMD resulted in significantly lower transmission efficiencies compared to the SFIC FMD (p ≤ 0.04) and FS FMDs perform much worse when light-absorptive materials, like black dye, are placed in the bore. The light absorption of a candidate cytotoxic agent, QUAD-CTX, appear to be similar to water, and light delivery through FS FMDs filled with QUAD-CTX achieves a transmission efficiency of 85.6 ± 5.4%. The fabrication process of the SFIC FMDs results in extremely fragile FMDs. Therefore, the use of a modified FS FMD fabrication process appears to be better suited for balancing the desire to increase light transmission efficiency while retaining a sturdy FMD construction.

13.
Res Vet Sci ; 143: 74-80, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995824

RESUMO

The fiberoptic microneedle device (FMD) is a fused-silica microcatheter capable of co-delivery of fluids and light that has been developed for convection-enhanced delivery and photothermal treatments of glioblastoma. Here we investigate the biocompatibility of FMD fragments chronically implanted in the rat brain in the context of evaluating potential mechanical device failure. Fischer rats underwent craniectomy procedures for sham control (n = 16) or FMD implantation (n = 16) within the brain. Rats were examined daily after implantation, and at 14, 30, 90, and 180 days after implantation were evaluated via computed tomography of the head, hematologic and blood biochemical profiling, and necropsy examinations. Clinical signs of illness and distant implant migration were not observed, and blood analyses were not different between control and FMD implanted groups at any time. Mild inflammatory and astrogliotic reactions localized to the treatment sites within the brain were observed in all groups, more robust in FMD implanted groups compared to controls at days 30 and 90, and decreased in severity over days 90-180 of the study. One rat developed a chronic, superficial surgical site pyogranuloma attributed to the FMD silica implant. Chronically implanted FMD fragments were well tolerated clinically and resulted in anticipated mild, localized brain tissue responses that were comparable with other implanted biomaterials in the brain.


Assuntos
Materiais Biocompatíveis , Agulhas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Próteses e Implantes/efeitos adversos , Próteses e Implantes/veterinária , Ratos
14.
J Vet Intern Med ; 36(3): 1066-1074, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35274379

RESUMO

BACKGROUND: Brain tumor therapeutic responses can be quantified from magnetic resonance images (MRI) using 1- (1D) and 2-dimensional (2D) linear and volumetric methods, but few studies in dogs compare these techniques. HYPOTHESES: Linear methods will be obtained faster, but have less agreement than volumetric measurements. Therapeutic response agreement will be highest with the total T2W tumor volumetric (TTV) method. Therapeutic response at 6-weeks will correlate with overall survival (OS). ANIMALS: Forty-six dogs with intracranial gliomas. METHODS: Prospective study. Three raters measured tumors using 1D and 2D linear, TTV, and contrast-enhancing volumetric (CEV) techniques on 143 brain MRI to determine agreement between methods, define therapeutic responses, and assess relations with OS. RESULTS: Raters performed 1D the fastest (2.9 ± 0.57 minutes) and CEV slowest (17.8 ± 6.2 minutes). Inter- and intraobserver agreements were excellent (intraclass correlations ≥.91) across methods. Correlations between linear (1D vs 2D; ρ > .91) and volumetric (TTV vs CEV; ρ > .73) methods were stronger than linear to volumetric comparisons (ρ range, .26-.59). Incorporating clinical and imaging data resulted in fewer discordant therapeutic responses across methods. Dogs having partial tumor responses at 6 weeks had a lower death hazard than dogs with stable or progressive disease when assessed using 2D, CEV, and TTV (hazard ration 2.1; 95% confidence interval, 1.22-3.63; P = .008). CONCLUSIONS AND CLINICAL IMPORTANCE: One-dimensional, 2D, CEV, and TTV are comparable for determining therapeutic response. Given the simplicity, universal applicability, and superior performance of the TTV, we recommend its use to standardize glioma therapeutic response criteria.


Assuntos
Neoplasias Encefálicas/veterinária , Doenças do Cão/diagnóstico por imagem , Glioma/veterinária , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Cães , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/veterinária , Estudos Prospectivos , Resultado do Tratamento
15.
Front Vet Sci ; 9: 1039745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330152

RESUMO

The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.

16.
Lasers Surg Med ; 43(8): 814-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21956629

RESUMO

BACKGROUND AND OBJECTIVES: Mechanical tissue optical clearing permits light delivery deeper into turbid tissue, which may improve current optical diagnostics and laser-based therapeutic techniques. We investigated the effects of localized compression on brightfield imaging through ex vivo porcine skin by evaluating resolution and contrast of a target positioned beneath native, mechanically compressed, or chemically cleared specimens. We also evaluated the effects of indentation on dynamic tissue thickness and light transmission. STUDY DESIGN/METHODS: A 5 mm diameter, hemispherically tipped, manual load transducer was used to compress specimens using 2-44 N for 60 seconds. Chemically cleared specimens were immersed for 1 hour in glycerol or dimethyl sulfoxide. A USAF 1951 resolution target was positioned beneath specimens and imaged using brightfield microscopy. Resolution and contrast of target features were analyzed. In separate experiments, a mechanical test instrument was used to compress and hold specimens at a final thickness while measuring applied load and light transmission. RESULTS: Image intensity profiles showed that while uncompressed skin did not allow resolution of any target, localized compression allowed maximum resolution up to a line width of 173 ± 21 µm. Mechanical clearing achieved up to four times higher maximum resolution and 2-3 times higher contrast sensitivity than chemical immersion. Resolving capability was highly correlated with compressive tissue strain. Light transmission increased during tissue compression, but also increased while holding final thickness constant. CONCLUSION: Localized compression is an effective technique for increasing resolution and contrast of target features through tissue and may improve light-based diagnostics. Thickness reduction and other mechanisms appear to contribute to this effect.


Assuntos
Luz , Pele , Animais , Fenômenos Biomecânicos , Pressão , Pele/efeitos dos fármacos , Suínos
17.
Lasers Surg Med ; 43(9): 914-20, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22006734

RESUMO

BACKGROUND AND OBJECTIVES: Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. MATERIALS AND METHODS: A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. RESULTS: Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. CONCLUSIONS: We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent, non-target tissue.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Terapia a Laser/instrumentação , Agulhas , Desenho de Equipamento
18.
Lasers Surg Med ; 43(1): 43-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21254142

RESUMO

BACKGROUND: Nanoparticles have significant potential as selective photo-absorbing agents for laser based cancer treatment. This study investigates the use of single walled carbon nanohorns (SWNHs) as thermal enhancers when excited by near infrared (NIR) light for tumor cell destruction. METHODS: Absorption spectra of SWNHs in deionized water at concentrations of 0, 0.01, 0.025, 0.05, 0.085, and 0.1 mg/ml were measured using a spectrophotometer for the wavelength range of 200-1,400 nm. Mass attenuation coefficients were calculated using spectrophotometer transmittance data. Cell culture media containing 0, 0.01, 0.085, and 0.333 mg/ml SWNHs was laser irradiated at 1,064 nm wavelength with an irradiance of 40 W/cm² for 0-5 minutes. Temperature elevations of these solutions during laser irradiation were measured with a thermocouple 8 mm away from the incident laser beam. Cell viability of murine kidney cancer cells (RENCA) was measured 24 hours following laser treatment with the previously mentioned laser parameters alone or with SWNHs. Cell viability as a function of radial position was determined qualitatively using trypan blue staining and bright field microscopy for samples exposed to heating durations of 2 and 6 minutes alone or with 0.085 mg/ml SWNHs. A Beckman Coulter Vi-Cell instrument quantified cell viability of samples treated with varying SWNH concentration (0, 0.01, 0.085, and 0.333 mg/ml) and heating durations of 0-6 minutes. RESULTS: Spectrophotometer measurements indicated inclusion of SWNHs increased light absorption and attenuation across all wavelengths. Utilizing SWNHs with laser irradiation increased temperature elevation compared to laser heating alone. Greater absorption and higher temperature elevations were observed with increasing SWNH concentration. No inherent toxicity was observed with SWNH inclusion. A more rapid and substantial viability decline was observed over time in samples exposed to SWNHs with laser treatment compared with samples experiencing laser heating or SWNH treatment alone. Samples heated for 6 minutes with 0.085 mg/ml SWNHs demonstrated increasing viability as the radial distance from the incident laser beam increased. CONCLUSIONS: The significant increases in absorption, temperature elevation, and cell death with inclusion of SWNHs in laser therapy demonstrate the potential of their use as agents for enhancing photothermal tumor destruction.


Assuntos
Terapia a Laser/métodos , Nanotubos de Carbono , Neoplasias/terapia , Animais , Terapia Combinada , Células Tumorais Cultivadas
19.
J Eng Sci Med Diagn Ther ; 4(1): 011003, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35832263

RESUMO

Standard treatment for glioblastoma is noncurative and only partially effective. Convection-enhanced delivery (CED) was developed as an alternative approach for effective loco-regional delivery of drugs via a small catheter inserted into the diseased brain. However, previous CED clinical trials revealed the need for improved catheters for controlled and satisfactory distribution of therapeutics. In this study, the arborizing catheter, consisting of six infusion ports, was compared to a reflux-preventing single-port catheter. Infusions of iohexol at a flow rate of 1 µL/min/microneedle were performed, using the arborizing catheter on one hemisphere and a single-port catheter on the contralateral hemisphere of excised pig brains. The volume dispersed (Vd) of the contrast agent was quantified for each catheter. Vd for the arborizing catheter was significantly higher than for the single-port catheter, 2235.8 ± 569.7 mm3 and 382.2 ± 243.0 mm3, respectively (n = 7). Minimal reflux was observed; however, high Vd values were achieved with the arborizing catheter. With simultaneous infusion using multiple ports of the arborizing catheter, high Vd was achieved at a low infusion rate. Thus, the arborizing catheter promises a highly desirable large volume of distribution of drugs delivered to the brain for the purpose of treating brain tumors.

20.
J Biomech Eng ; 132(9): 091014, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815648

RESUMO

Shallow light penetration in tissue has been a technical barrier to the development of light-based methods for in vivo diagnosis and treatment of epithelial carcinomas. This problem can potentially be solved by utilizing minimally invasive probes to deliver light directly to target areas. To develop this solution, fiber optic microneedles capable of delivering light for either imaging or therapy were manufactured by tapering step-index silica-based optical fibers employing a melt-drawing process. Some of the microneedles were manufactured to have sharper tips by changing the heat source during the melt-drawing process. All of the microneedles were individually inserted into ex vivo pig skin samples to demonstrate the feasibility of their application in human tissues. The force on each microneedle was measured during insertion in order to determine the effects of sharper tips on the peak force and the steadiness of the increase in force. Skin penetration experiments showed that sharp fiber optic microneedles that are 3 mm long penetrate through 2 mm of ex vivo pig skin specimens. These sharp microneedles had a minimum average diameter of 73 mum and a maximum tip diameter of 8 mum. Flat microneedles, which had larger tip diameters, required a minimum average diameter of 125 mum in order to penetrate through pig skin samples. Force versus displacement plots showed that a sharp tip on a fiber optic microneedle decreased the skin's resistance during insertion. Also, the force acting on a sharp microneedle increased more steadily compared with a microneedle with a flat tip. However, many of the sharp microneedles sustained damage during skin penetration. Two designs that did not accrue damage were identified and will provide a basis of more robust microneedles. Developing resilient microneedles with smaller diameters will lead to transformative, novel modes of transdermal imaging and treatment that are less invasive and less painful for the patient.


Assuntos
Tecnologia de Fibra Óptica , Luz , Agulhas , Pele/metabolismo , Administração Cutânea , Animais , Estudos de Viabilidade , Humanos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA