Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 16(1): 116, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34241736

RESUMO

Electrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.

2.
Sci Rep ; 10(1): 20847, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257811

RESUMO

Electrospinning is a simple versatile process used to produce nanofibers and collect them as a nanofiber mat. However, due to bending instability, electrospinning often produces a nanofiber mat with non-uniform mat thickness. In this study, we developed a uniform-thickness electrospun nanofiber mat (UTEN) production system with a movable collector based on real-time thickness measurement and thickness feedback control. This system is compatible with a collector with void regions such as a mesh-type collector, two-parallel-metal-plate collector, and ring-type collector, which facilitates the measurement of light transmittance across the produced nanofiber mat during electrospinning. A real-time measurement system was developed to measure light transmittance and convert it to the thickness of the nanofiber mat in real time using the Beer-Lambert law. Thickness feedback control was achieved by repeating the following sequences: (1) finding an optimal position of the movable collector based on the measured thickness of the nanofiber mat, (2) shifting the collector to an optimal position, and (3) performing electrospinning for a given time step. We found that the suggested thickness feedback control algorithm could significantly decrease the non-uniformity of the nanofiber mat by reducing the standard deviation by more than 8 and 3 times for the numerical simulation and experiments, respectively, when compared with the conventional electrospinning. As a pioneering research, this study will contribute to the development of an electrospinning system to produce robust and reliable nanofiber mats in many research and industrial fields such as biomedicine, environment, and energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA