Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(2): 761-767, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029396

RESUMO

Electric vehicle manufacturers worldwide are demanding superior lithium-ion batteries, with high energy and power densities, compared to gasoline engines. Although conversion-type metal oxides are promising candidates for high-capacity anodes, low initial Coulombic efficiency (ICE) and poor capacity retention have hindered research on their applications. In this study, the ICE of conversion-type MoO3 is investigated, with a particular focus on the delithiation failure. A computational modeling predicts the concentration gradient of Li+ in MoO3 particles. The highly delithiated outer region of the particle forms a layer with low electronic conductivity, which impedes further delithiation. A comparative study using various sizes of MoO3 particles demonstrated that the electrode failure during delithiation is governed by the concentration gradient and the subsequent formation of a resistive shell. The proposed failure mechanism provides critical guidance for the development of conversion-type anode materials with improved electrochemical reversibility.

2.
Angew Chem Int Ed Engl ; 53(40): 10654-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25130188

RESUMO

The lithiation/de-lithiation behavior of a ternary oxide (Li2MO3, where M = Mo or Ru) is examined. In the first lithiation, the metal oxide (MO2) component in Li2MO3 is lithiated by a conversion reaction to generate nano-sized metal (M) particles and two equivalents of Li2O. As a result, one idling Li2O equivalent is generated from Li2MO3. In the de-lithiation period, three equivalents of Li2O react with M to generate MO3. The first-cycle Coulombic efficiency is theoretically 150% since the initial Li2MO3 takes four Li(+) ions and four electrons per formula unit, whereas the M component is oxidized to MO3 by releasing six Li(+) ions and six electrons. In practice, the first-cycle Coulombic efficiency is less than 150% owing to an irreversible charge consumption for electrolyte decomposition. The as-generated MO3 is lithiated/de-lithiated from the second cycle with excellent cycle performance and rate capability.

3.
ChemSusChem ; 16(11): e202300691, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293753

RESUMO

Invited for this month's cover are the groups of Prof. Hyun Deog Yoo and Prof. Jin Kyoon Park at Pusan National University, and Prof. Ji Heon Ryu at Tech University of Korea (Republic of Korea). The cover image illustrates the generation of tailor-made pores by the electrochemical activation of expanded graphite for a magnesium-organocation hybrid battery. The Research Article itself is available at 10.1002/cssc.202300035.


Assuntos
Grafite , Humanos , Magnésio , Fontes de Energia Elétrica
4.
ChemSusChem ; 16(11): e202300035, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37041116

RESUMO

Persisting limitations of lithium-ion batteries (LIBs) in terms of safety, energy and power density, natural resources, and the price call for expeditious research to develop the "beyond Li-ion" technologies. In this regard, magnesium-organocation hybrid batteries (MOHB) hold the potential to address the above issues associated with LIBs by utilizing abundant and inexpensive elements of magnesium and carbon for the anode and cathode, respectively. Moreover, magnesium metal anode is highly energy-dense yet less susceptible to the dendrite formation, enabling safer operation compared to lithium metal anodes. In this study, we targeted to increase the capacity and rate capability of porous carbon cathode of MOHB by generating tailor-made pores, which were provided by the interlayer accommodation of solvated organic cations with controlled sizes during the electrochemical activation of expanded graphite. Our electrochemically activated expanded graphite can be used as an efficient cathode in MOHB with enhanced kinetics, specific capacitance, and cycle life.


Assuntos
Grafite , Magnésio , Lítio , Carbono , Capacitância Elétrica
5.
Sci Rep ; 11(1): 13095, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158587

RESUMO

As the application of lithium-ion batteries in electric vehicles increases, the demand for improved charging characteristics of batteries is also increasing. Lithium titanium oxide (Li4Ti5O12, LTO) is a negative electrode material with high rate characteristics, but further improvement in rate characteristics is needed for achieving the quick-charging performance required by electric vehicle markets. In this study, the surface of LTO was coated with a titanium nitride (TiN) layer using urea and an autogenic reactor, and electrochemical performance was improved (initial Coulombic efficiency and the rate capability were improved from 95.6 to 4.4% for pristine LTO to 98.5% and 53.3% for urea-assisted TiN-coated LTO, respectively. We developed a process for commercial production of surface coatings using eco-friendly material to further enhance the charging performance of LTO owing to high electronic conductivity of TiN.

6.
Nano Converg ; 8(1): 21, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34259945

RESUMO

Herein, the ferrocene redox indicator-based surface film characteristics of spinel lithium manganese oxide (LMO) were evaluated. The pre-cycling of spinel LMO generated a film on the LMO surface. The surface film deposited on LMO surface suppresses further electrolyte decomposition, while the penetration of approximately 0.7 nm-sized redox indicator is not prevented. The facile self-discharge of LMO and regeneration current from the ferrocenium molecule was observed from the redox indicator in a specifically designed four-electrode cell. From this electrochemical behavior, a small-sized HF molecule attack on the LMO surface through a carbonate-based electrolyte-derived film is defined; hence, the prevention of small-sized molecules into the deposited surface film is crucial for the enhancement of LiMn2O4-based lithium-ion batteries.

7.
J Nanosci Nanotechnol ; 20(11): 7002-7009, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604549

RESUMO

In the current study, we prepared a LixLa3Zr2O12 ((Al, Ta) LLZO) powder doped with 0.2 mol of Al and Ta using the sol-gel method and subsequently used it to fabricate solid electrolyte pellets. In pellets with lithium content of 6.2 and 6.82 mol, a cubic phase and a lithium-deficient pyrochlore mixed-phase were respectively observed. However, when the lithium content was 8.06 mol, a lithium-excess phase was also observed. Meanwhile, at 7.44 mol lithium, the (Al, Ta) LLZO ceramic pellets showed a pure cubic garnet phase with no secondary phase. When lithium was added excessively, a non-granular morphology was observed at the (Al, Ta) LLZO fracture surface in which the grains were tightly bonded by the liquid phase formed during sintering. Nyquist plots of the pellets showed that the effect of grain boundaries was eliminated and the pellets exhibited a high lithium ion conductivity of 4.26 × 10-4 S/cm. Using spin coating and multi-step heat treatment, we deposited LiCoO2 (LCO) thin films on (Al, Ta) LLZO pellets to form cathodes. There was no significant interdiffusion between the LCO cathode and (Al, Ta) LLZO solid electrolyte and morphological analysis indicted that a thin interfacial layer (~10 nm) was formed between the LCO and the electrolyte. Finally, we demonstrated an all-solid-state rechargeable battery in the form of a coin cell comprising of an LCO cathode, Li metal anode, and (Al, Ta) LLZO solid electrolyte, which could yield a discharge capacity of ~100 mAh/g.

8.
ACS Appl Mater Interfaces ; 11(12): 11306-11316, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830735

RESUMO

4-(Trimethylsiloxy)-3-pentene-2-one (TMSPO) is tested as an electrolyte additive to enhance Coulombic efficiency and cycle retention for the Li/LiNi0.5Mn1.5O4 (LNMO) half-cell and graphite/LNMO full-cell. TMSPO carries two functional groups, siloxane (-Si-O-) and carbon-carbon (C═C) double bonds. It is found that the siloxane group reacts with hydrogen fluoride (HF), which is generated by hydrolysis of lithium hexafluorophosphate (LiPF6) by impure water in the electrolyte solution, to produce 4-hydroxypent-3-ene-2-one (HPO). The as-generated HPO, as well as TMSPO itself, is electrochemically oxidized to form a protective surface film on the LNMO electrode, in which it is inferred that the carbon-carbon (C═C) double bond initiates radical polymerization. The surface film derived from the TMSPO-added electrolyte shows a superior passivating ability to that generated from the pristine (TMSPO-free) electrolyte. The suppression of electrolyte oxidation enabled by the superior passivating ability offers two beneficial features to the half-cells and full-cells: the suppression of both HF generation and deposition of the resistive surface film on LNMO. As a result, the metal dissolution by HF attack on LNMO appears to be smaller by the addition of TMSPO. The cell polarization is also less significant because of the latter beneficial feature. In short, the bifunctional activity of TMSPO (HF scavenger and protective film former) allows an enhanced Coulombic efficiency and cycle retention to the half-cell and full-cell.

9.
Adv Mater ; 26(24): 4139-44, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24711097

RESUMO

Sn4 P3 is introduced for the first time as an anode material for Na-ion batteries. Sn4 P3 delivers a high reversible capacity of 718 mA h g(-1), and shows very stable cycle performance with negligible capa-city fading over 100 cycles, which is attributed to the confinement effect of Sn nanocrystallites in the amorphous phosphorus matrix during cycling.

10.
Sci Rep ; 4: 5802, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168309

RESUMO

Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

11.
Adv Mater ; 25(22): 3045-9, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23494991

RESUMO

An amorphous red phosphorus/carbon composite is obtained through a facile and simple ball milling process, and its electrochemical performance as an anode material for Na ion batteries is evaluated. The composite shows excellent electrochemical performance including a high specific capacity of 1890 mA h g(-1), negligible capacity fading over 30 cycles, an ideal redox potential (0.4 V vs. Na/Na(+)), and an excellent rate performance, thus making it a promising candidate for Na ion batteries.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Fósforo/química , Sódio/química , Cor , Condutividade Elétrica , Eletrodos
12.
Biosens Bioelectron ; 25(5): 1160-5, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19914817

RESUMO

An amperometric biosensor for the detection of the reduced nicotinamide cofactors NADH and NADPH was designed, based on the electrochemical oxidation of NAD(P)H with an iron oxide/carbon black composite (Fe(2)O(3)/CB) electrode. The electrode exhibited excellent performances in that it led to a substantial decrease in the overpotential of electrochemical NADH oxidation. Iron oxide plays a significant role as a catalyst for NADH oxidation and the reaction occurs at +0.00 V (vs. Ag/AgCl). The method of the sensor construction is very simple and the sensor performed well, giving high sensitivity, high stability, and a broad detection range. The sensitivity of this system is 2.54 microA mM(-1) and the limit of detection (S/N=3) is 10 microM. A linear range was observed between 10 microM and 1000 microM of NADH (R(2)=0.993), which is preferable to that of the previous studies. The Fe(2)O(3)/CB electrode also oxidizes NADPH under the same condition and can be applied as an NADPH sensor. Moreover, when the sensor system was integrated into a dehydrogenase-based sensor system, it also showed a good sensing performance.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Eletrodos , Compostos Férricos/química , NADP/análise , NAD/análise , Fuligem/química , Coenzimas/análise , Coenzimas/química , Desenho de Equipamento , Análise de Falha de Equipamento , NAD/química , NADP/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA