Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 292(31): 12764-12771, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28615454

RESUMO

Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells.


Assuntos
Citosol/metabolismo , Ferritinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Animais , Apoenzimas/química , Apoenzimas/metabolismo , Apoferritinas/química , Apoferritinas/metabolismo , Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação a DNA , Dimerização , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Ferritinas/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Ferro-Enxofre/química , Chaperonas Moleculares/química , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas/química , Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
2.
Blood Cells Mol Dis ; 69: 75-81, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29032941

RESUMO

Developing red blood cells exhibit multiple, redundant systems for regulating and coordinating the uptake of iron, the synthesis of heme, and the formation of hemoglobin during terminal differentiation. We recently described the roles of poly rC-binding protein (PCBP1) and nuclear coactivator 4 (NCOA4) in mediating the flux of iron through ferritin in developing erythroid cells, with PCBP1, an iron chaperone, delivering iron to ferritin and NCOA4, an autophagic cargo receptor, directing ferritin to the lysosome for degradation and iron release. Ferritin iron flux is critical, as mice lacking these factors develop microcytic anemia. Here we report that these processes are regulated by cellular iron levels in a murine model of ex vivo terminal differentiation. PCBP1 delivers iron to ferritin via a direct protein-protein interaction. This interaction is developmentally regulated, enhanced by iron deprivation, and inhibited by iron excess, both in developing cells and in vitro. NCOA4 activity also exhibited developmental regulation and regulation by cellular iron levels. Excess iron uptake during differentiation triggered lysosomal degradation of NCOA4, which was dependent on the E3 ubiquitin ligase HERC2. Thus, developing red blood cells express a series of proteins that both mediate and regulate the flux of iron to the mitochondria.


Assuntos
Células Eritroides/citologia , Células Eritroides/metabolismo , Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Proteínas de Transporte , Linhagem Celular , Proteínas de Ligação a DNA , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Coativadores de Receptor Nuclear/genética , Proteínas de Ligação a RNA
3.
Proc Natl Acad Sci U S A ; 111(22): 8031-6, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843120

RESUMO

Although cells express hundreds of metalloenzymes, the mechanisms by which apoenzymes receive their metal cofactors are largely unknown. Poly(rC)-binding proteins PCBP1 and PCBP2 are multifunctional adaptor proteins that bind iron and deliver it to ferritin for storage or to prolyl and asparagyl hydroxylases to metallate the mononuclear iron center. Here, we show that PCBP1 and PCBP2 also deliver iron to deoxyhypusine hydroxylase (DOHH), the dinuclear iron enzyme required for hypusine modification of the translation factor eukaryotic initiation factor 5A. Cells depleted of PCBP1 or PCBP2 exhibited loss of DOHH activity and loss of the holo form of the enzyme in cells, particularly when cells were made mildly iron-deficient. Lysates containing PCBP1 and PCBP2 converted apo-DOHH to holo-DOHH in vitro with greater efficiency than lysates lacking PCBP1 or PCBP2. PCBP1 bound to DOHH in iron-treated cells but not in control or iron-deficient cells. Depletion of PCBP1 or PCBP2 had no effect on the cytosolic Fe-S cluster enzyme xanthine oxidase but led to loss of cytosolic aconitase activity. Loss of aconitase activity was not accompanied by gain of RNA-binding activity, a pattern suggesting the incomplete disassembly of the [4Fe-4S] cluster. PCBP depletions had minimal effects on total cellular iron, mitochondrial iron levels, and heme synthesis. Thus, PCBP1 and PCBP2 may serve as iron chaperones to multiple classes of cytosolic nonheme iron enzymes and may have a particular role in restoring metal cofactors that are spontaneously lost in iron deficient cells.


Assuntos
Ferritinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ferro/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carcinoma Hepatocelular , Citosol/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Heme/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Proteínas Ferro-Enxofre/metabolismo , Neoplasias Hepáticas , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
4.
Proc Natl Acad Sci U S A ; 108(52): 20970-5, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22171008

RESUMO

Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Dieta , Homeostase/fisiologia , MicroRNAs/sangue , Zinco/deficiência , Adulto , Análise de Variância , Primers do DNA/genética , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Masculino , Análise em Microsséries , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/sangue , Zinco/sangue
5.
Transl Anim Sci ; 8: txae030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510065

RESUMO

The objectives of this study were to determine a practical approach to feeding elevated dietary zinc (Zn) to gestating sows in a commercial setting and to confirm preweaning mortality could be reduced by feeding high Zn to sows during different periods of gestation. The study was conducted at a commercial sow farm in the upper Midwest. Mixed parity sows (n = 267) over three consecutive weekly farrowing groups (sows farrowing within 1 wk) were assigned randomly to one of the three dietary treatments within parity. Treatments consisted of: (1) control sows fed a corn-soybean meal diet containing 206 mg/kg total supplemental Zn supplied by zinc hydroxychloride; (2) breed-to-farrow: as control + 147 mg/kg supplemental Zn as ZnSO4 (353 mg/kg total supplemental Zn) fed from 5 d after breeding to farrowing; and (3) day 110-to-farrow: as control fed from breeding to farrowing + 4,079 mg/kg supplemental Zn as ZnSO4 (4,285 mg/kg total supplemental Zn) starting day 110 of gestation until farrowing. At farrowing, individual piglets were weighed and identified within 12 h of birth. Data were analyzed using PROC GLIMMIX of SAS and the model considered the fixed effect of dietary treatment and random effect of farrowing group. Dietary treatments did not affect number of total pigs born per litter. For breed-to-farrow sows, there was an increase in the percentage of pigs born alive compared to sows fed the control and day 110-to-farrow treatments (P < 0.001). The number of stillborn pigs expressed as a percentage of total litter size at birth decreased for breed-to-farrow sows (P < 0.001) compared with control or day 110-to-farrow sows. Mortality of low birth weight piglets from birth to weaning did not differ among dietary treatments (P = 0.305); however, a trend for decreasing post-natal mortality (P = 0.068) of normal birth weight pigs was observed for pigs born to sows fed elevated Zn 5 d before farrowing. In conclusion, feeding elevated Zn to sows throughout gestation increased the proportion of pigs born alive suggesting that elevated gestational Zn intake makes piglets more robust to endure the stresses of farrowing and decreases intrapartum mortality. Under the conditions of this study, elevated Zn intake of sows did not influence piglet post-natal survival. However, feeding high zinc throughout gestation may decrease piglet mortality during the parturition process.

6.
Proc Natl Acad Sci U S A ; 107(7): 2818-23, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133611

RESUMO

The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Pâncreas/metabolismo , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/metabolismo , Análise de Variância , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dexametasona/farmacologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Immunoblotting , Cinética , Luciferases , Camundongos , Pâncreas/citologia , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zinco/metabolismo , Zinco/farmacologia , Fator MTF-1 de Transcrição
7.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678152

RESUMO

Anemia is the most prevalent nutrition-related disorder worldwide. Zinc is an essential trace element for various biological processes in the body, and zinc deficiency has been associated with anemia in humans. However, the molecular mechanisms by which zinc availability alters red blood cell development remain uncertain. The present study identifies the essentiality of zinc during erythroid development, particularly for normal heme biosynthesis. G1E-ER4 mouse cells were used as an in vitro model of terminal erythroid differentiation, which featured elevated cellular zinc content by development. Restriction of zinc import compromised the rate of heme and α-globin production and, thus, the hemoglobinization of the erythroid progenitors. Heme is synthesized by the incorporation of iron into protoporphyrin. The lower heme production under zinc restriction was not due to changes in iron but was attributable to less porphyrin synthesis. The requirement of adequate zinc for erythroid heme metabolism was confirmed in another erythropoietic cell model, MEL-DS19. Additionally, we found that a conventional marker of iron deficiency anemia, the ZnPP-to-heme ratio, responded to zinc restriction differently from iron deficiency. Collectively, our findings define zinc as an essential nutrient integral to erythroid heme biosynthesis and, thus, a potential therapeutic target for treating anemia and other erythrocyte-related disorders.


Assuntos
Anemia Ferropriva , Anemia , Humanos , Animais , Camundongos , Heme/metabolismo , Ferro/metabolismo , Zinco
8.
Front Nutr ; 10: 1054852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742433

RESUMO

Introduction: Neurons require iron to support their metabolism, growth, and differentiation, but are also susceptible to iron-induced oxidative stress and cytotoxicity. Ferritin, a cytosolic iron storage unit, mediates cellular adaptation to fluctuations in iron delivery. NCOA4 has been characterized as a selective autophagic cargo receptor facilitating the mobilization of intracellular iron from ferritin. This process named ferritinophagy results in the degradation of ferritin and the consequent release of iron into the cytosol. Methods: Here we demonstrate that NCOA4 is important for the adaptation of the HT22 mouse hippocampal neuronal cell line to cellular iron restriction. Additionally, we determined the pathophysiological implications of impaired ferritinophagy via functional analysis of the omics profile of HT22 cells deficient in NCOA4. Results: NCOA4 silencing impaired ferritin turnover and was cytotoxic when cells were restricted of iron. Quantitative proteomics identified IRP2 accumulation among the most prominent protein responses produced by NCOA4 depletion in HT22 cells, which is indicative of functional iron deficiency. Additionally, proteins of apoptotic signaling pathway were enriched by those responsive to NCOA4 deficiency. Transcriptome profiles of NCOA4 depletion revealed neuronal cell death, differentiation of neurons, and development of neurons as potential diseases and bio functions affected by impaired ferritinophagy, particularly, when iron was restricted. Discussion: These findings identify an integral role of NCOA4-mediated ferritinophagy in the maintenance of iron homeostasis by HT22 cells, and its potential implications in controlling genetic pathways of neurodevelopment and neurodegenerative diseases.

9.
Blood Adv ; 7(13): 3023-3031, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36735400

RESUMO

Data from small clinical trials in the United States and India suggest zinc supplementation reduces infection in adolescents and adults with sickle cell anemia (SCA), but no studies of zinc supplementation for infection prevention have been conducted in children with SCA living in Africa. We conducted a randomized double-blind placebo-controlled trial to assess zinc supplementation for prevention of severe or invasive infections in Ugandan children 1.00-4.99 years with SCA. Of 252 enrolled participants, 124 were assigned zinc (10 mg) and 126 assigned placebo once daily for 12 months. The primary outcome was incidence of protocol-defined severe or invasive infections. Infection incidence did not differ between treatment arms (282 vs. 270 severe or invasive infections per 100 person-years, respectively, incidence rate ratio of 1.04 [95% confidence interval (CI), 0.81, 1.32, p=0.78]), adjusting for hydroxyurea treatment. There was also no difference between treatment arms in incidence of serious adverse events or SCA-related events. Children receiving zinc had increased serum levels after 12-months, but at study exit, 41% remained zinc deficient (<65 µg/dL). In post-hoc analysis, occurrence of stroke or death was lower in the zinc treatment arm (adjusted hazard ratio (95% CI), 0.22 (0.05, 1.00); p=0.05). Daily 10 mg zinc supplementation for 12 months did not prevent severe or invasive infections in Ugandan children with SCA, but many supplemented children remained zinc deficient. Optimal zinc dosing and the role of zinc in preventing stroke or death in SCA warrant further investigation. This trial was registered at clinicaltrials.gov as #NCT03528434.


Assuntos
Anemia Falciforme , Acidente Vascular Cerebral , Adulto , Adolescente , Humanos , Criança , Zinco/uso terapêutico , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Hidroxiureia/uso terapêutico , África
10.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290647

RESUMO

Macrophages, via erythrophagocytosis, recycle iron from effete erythrocytes to newly developing red blood cells. Conversion of potentially cytotoxic levels of iron from its heme into nonheme form during iron recycling is safely accomplished via coordinated regulations of cellular iron transport and homeostasis. Herein, we demonstrate the roles and regulation of NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy in macrophages after erythrophagocytosis using the mouse macrophage cell line J774 cells. Ferritin in J774 cells increased with the rise of nonheme iron by erythrocyte ingestion and declined when total cellular iron contents subsequently decreased. NCOA4, a selective autophagic cargo receptor for ferritin, was responsible for the control of cellular ferritin and total iron contents at the later stage of erythrophagocytosis. A hepcidin analog, which limits the flux of iron through iron-recycling by inhibiting iron export at the plasma membrane, repressed NCOA4 expression and led to accumulation of ferritin in the mouse macrophages. Transcriptome analyses revealed a functional association of immune response with NCOA4-dependent gene expressions, and we confirmed repression of Ncoa4 by lipopolysaccharide (LPS) in J774 cells and the spleen of mice. Collectively, our studies indicate that NCOA4 facilitates cellular ferritin turnover and the release of iron by macrophages after erythrophagocytosis and functions as a regulatory target for molecular signals of systemic iron overload and inflammation. These identify macrophage NCOA4 as a potential therapeutic target for disorders of systemic iron dysregulation, including anemia of inflammation and hemochromatosis.

11.
Nutrients ; 12(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080795

RESUMO

Blood levels of iron and copper, even within their normal ranges, have been associated with a wide range of clinical outcomes. The available epidemiological evidence for these associations is often inconsistent and suffers from confounding and reverse causation. This study aims to examine the causal clinical effects of blood iron and copper with Mendelian randomization (MR) analyses. Genetic instruments for the blood levels of iron and copper were curated from existing genome-wide association studies. Candidate clinical outcomes were identified based on a phenome-wide association study (PheWAS) between these genetic instruments and a wide range of phenotypes in 310,999 unrelated individuals of European ancestry from the UK Biobank. All signals passing stringent correction for multiple testing were followed by MR analyses, with replication in independent data sources where possible. We found that genetically predicted higher blood levels of iron and copper are both associated with lower risks of iron deficiency anemia (odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.67-0.85, p = 1.90 × 10-6 for iron; OR = 0.88, 95% CI: 0.78-0.98, p = 0.032 for copper), lipid metabolism disorders, and its two subcategories, hyperlipidemia (OR = 0.90, 95% CI: 0.85-0.96, p = 6.44 × 10-4; OR = 0.92, 95% CI: 0.87-0.98, p = 5.51 × 10-3) and hypercholesterolemia (OR = 0.90, 95% CI: 0.84-0.95, p = 5.34 × 10-4; OR = 0.93, 95% CI: 0.89-0.99, p = 0.022). Consistently, they are also associated with lower blood levels of total cholesterol and low-density lipoprotein cholesterol. Multiple sensitivity tests were applied to assess the presence of pleiotropy and the robustness of causal estimates. Regardless of the approaches, consistent evidence was obtained. Moreover, the unique clinical effects of each blood mineral were identified. Notably, genetically predicated higher blood iron is associated with an enhanced risk of varicose veins (OR = 1.28, 95% CI: 1.15-1.42, p = 4.34 × 10-6), while blood copper is positively associated with the risk of osteoarthrosis (OR = 1.07, 95% CI: 1.02-1.13, p = 0.010). Sex-stratified MR analysis further revealed some degree of sex differences in their clinical effects. Our comparative PheWAS-MR study of iron and copper comprehensively characterized their shared and unique clinical effects, highlighting their potential causal roles in hyperlipidemia and hypercholesterolemia. Given the modifiable nature of blood mineral status and the potential for clinical intervention, these findings warrant further investigation.


Assuntos
Cobre/sangue , Estudo de Associação Genômica Ampla , Ferro/sangue , Transtornos do Metabolismo dos Lipídeos/etiologia , Transtornos do Metabolismo dos Lipídeos/genética , Análise da Randomização Mendeliana , Fenótipo , Anemia Ferropriva , Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Masculino , Osteoartrite/etiologia , Polimorfismo de Nucleotídeo Único , Risco , Caracteres Sexuais , Reino Unido , Varizes/etiologia , População Branca
12.
J Nutr ; 138(11): 2076-83, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18936201

RESUMO

Zinc is essential for normal erythroid cell functions and therefore intracellular zinc homeostasis during erythroid differentiation is tightly regulated. However, a characterization of zinc transporters in erythrocytes has not been conducted. The membrane fraction of mature mouse RBC was screened for zinc transporter expression using western analysis as a first step in the characterization process. ZnT1, Zip8, and Zip10 were detected among the 12 transporter proteins tested. We examined expression of these zinc transporters during erythropoietin (EPO)-induced differentiation of splenic erythroid progenitor cells into reticulocytes. Both Zip8 and Zip10 mRNA increased by 2-6 h after addition of EPO to the cells. In contrast, maximal RNA levels for the zinc transporter ZnT1 and erythroid delta-aminolevulinic acid synthase were only produced by 24 h after EPO. We confirmed these changes in transcript abundance by western analysis. Dietary zinc status influences zinc-dependent functions of RBC. To determine whether the identified zinc transporters respond to dietary zinc status, mice were fed a zinc-deficient or control diet. Incorporation of (65)Zn into erythrocytes in vitro was significantly increased in cells from the zinc-deficient mice. Western analysis and densitometry revealed that erythrocyte Zip10 was upregulated and ZnT1 was downregulated in the zinc-depleted mice. Zip8 was not affected by restricted zinc intake. Collectively, these data suggest that the zinc transporters ZnT1, Zip8, and Zip10 are important for zinc homeostasis in erythrocytes and that ZnT1 and Zip10 respond to the dietary zinc supply.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Eritrócitos/metabolismo , Zinco/deficiência , Anemia/induzido quimicamente , Animais , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte de Cátions/genética , Dieta , Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos
13.
J Clin Invest ; 127(5): 1786-1797, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375153

RESUMO

Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.


Assuntos
Proteínas de Transporte/metabolismo , Eritrócitos/metabolismo , Heme/biossíntese , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Anemia/genética , Anemia/metabolismo , Animais , Transporte Biológico Ativo/genética , Células CHO , Proteínas de Transporte/genética , Cricetinae , Cricetulus , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA , Eritropoetina/genética , Eritropoetina/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Heme/genética , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Coativadores de Receptor Nuclear/genética , Proteínas de Ligação a RNA
14.
Front Pharmacol ; 5: 173, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101000

RESUMO

Eukaryotic cells contain hundreds of proteins that require iron cofactors for activity. These iron enzymes are located in essentially every subcellular compartment; thus, iron cofactors must travel to every compartment in the cell. Iron cofactors exist in three basic forms: Heme, iron-sulfur clusters, and simple iron ions (also called non-heme iron). Iron ions taken up by the cell initially enter a kinetically labile, exchangeable pool that is referred to as the labile iron pool. The majority of the iron in this pool is delivered to mitochondria, where it is incorporated into heme and iron-sulfur clusters, as well as non-heme iron enzymes. These cofactors must then be distributed to nascent proteins in the mitochondria, cytosol, and membrane-bound organelles. Emerging evidence suggests that specific systems exist for the distribution of iron cofactors within the cell. These systems include membrane transporters, protein chaperones, specialized carriers, and small molecules. This review focuses on the distribution of iron ions in the cytosol and will highlight differences between the iron distribution systems of simple eukaryotes and mammalian cells.

15.
PLoS One ; 7(10): e48679, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110240

RESUMO

ZIP14 (slc39A14) is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia) of acute inflammation. ZIP14 can transport Zn(2+) and non-transferrin-bound Fe(2+) in vitro. Using a Zip14(-/-) mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/-) mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/-) mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/-) phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are altered in the Zip14(-/-) mice and their phenotype shows defects in glucose homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Endotoxemia/metabolismo , Glucose/metabolismo , Imunidade Inata/fisiologia , Ferro/metabolismo , Fígado/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/genética , Endotoxemia/genética , Feminino , Humanos , Imunidade Inata/genética , Masculino
16.
Am J Clin Nutr ; 95(5): 1096-102, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22456662

RESUMO

BACKGROUND: Although the importance of adequate zinc intake has been known for decades, the estimated global prevalence of zinc deficiency remains high. This substantiates the need for a specific and sensitive status assessment tool. OBJECTIVE: The objective was to evaluate erythrocyte zinc transporters as candidate molecules with the potential of being a biomarker of dietary zinc status in humans. DESIGN: A 24-d observational study with acclimation (7 d, 10.4 mg Zn/d), zinc-depletion (10 d, 0.3 mg Zn/d), and zinc-repletion (7 d, 29.5 mg Zn/d) phases was conducted in healthy men (n = 9). Proteomic approaches including Western blot analyses and tandem mass spectrometry were implemented to identify the zinc responsiveness of selected red blood cell membrane proteins. RESULTS: Zinc transporter 1 (ZnT1) and Zrt/Irt-like proteins ZIP8 and ZIP10 were detected in human erythrocyte membranes. No effects of short-term dietary zinc depletion were observed on the amounts of these proteins. However, changes in a cytoskeletal protein, dematin, by zinc depletion were identified through the nonspecific signals produced by an anti-ZIP8 antibody. This response was further validated by a dematin-specific antibody and with erythrocytes collected from mice fed a zinc-deficient diet. CONCLUSIONS: The presence of ZnT1, ZIP8, and ZIP10 in human red blood cells implicates their role in the regulation of cellular zinc metabolism in the human erythroid system. The zinc responsiveness of membrane dematin suggests its capability to serve as a biomarker for dietary zinc depletion and its involvement in impaired erythroid membrane fragility by zinc restriction. This trial was registered at clinicaltrials.gov as NCT01221129.


Assuntos
Eritrócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteoma/análise , Zinco/administração & dosagem , Zinco/deficiência , Adulto , Sequência de Aminoácidos , Animais , Biomarcadores/sangue , Western Blotting , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Estado Nutricional , Espectrometria de Massas em Tandem , Regulação para Cima , Adulto Jovem
17.
PLoS One ; 6(6): e21526, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738690

RESUMO

The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Hepatócitos/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Camundongos , Fatores de Transcrição/genética , Fator MTF-1 de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA